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A Key Principle of Responsible Al: Fairness



Responsible Al Principles

« Responsible Al is a standard for ensuring that Al is safe, trustworthy and unbiased.
Responsible Al ensures that Al and machine learning (ML) models are Robust, Explainable, Ethical and Efficient. » FICO

Several organizations have published Al principles based on values / ethics ...
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Insights from R&D



Unwanted Bias in Al

© Bias: Algorithm performs differently for sensitive sub groups

© Sources are different and less obvious compared to conventional algorithms
— Data collection (historical bias)
— Sampling (representation bias)
- Measurement (measurement bias)
— Model learning (learning bias)
— Benchmarking (evaluation bias)

— Human interpretation (deployment bias)
2> ...

© If not controlled for, bias can get reproduced at scale without being noticed
© Research community has proposed plenty of fairness metrics and bias mitigation methods




Example: Two conflicting fairness metrics
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False negatives

Equalized Odds

Metrics: false positive and false negative rates
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Rationale: Based on the true outcome, the
proportion of correct decisions should be
equal across all groups.

False positives

Conditional Use Accuracy Equality

Metrics: false discovery and false omission rates
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Rationale: Based on the predictions, the proportion of
correct decisions should be equal across all groups.
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Web Application and Booklet
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Challenges and Best Practices

Available on GitHub: https://github.com/axa-rev-research/fairness-compass



https://github.com/axa-rev-research/fairness-compass

Future Work for R&D

© Sensitive attributes are missing in practice

© General Data Protection Regulation (GDPR) prohibits the collection and the processing of
sensitive personal attributes in many cases

© “Fairness by unawareness” insufficient due to many correlations in large datasets

© Existing limitations of research proposals
© Continuous sensitive attributes (e.g., age)
© Regression problems (e.g., insurance pricing)

© Other challenges

© Intersectional group fairness
© Group fairness vs. individual fairness
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From R&D to Practice:
Al Governance



AXA’s Responsible Al Circle (RAIC)

Purpose
In Jan. 2021, AXA launched the Responsible Al Circle, a light and agile The Circle is in charge of overseeing the
multi-stakeholder (Group & entities) governance body. Responsible adoption of Al within the Group.
| AXA’s Responsible Al Circle gathers 25+ permanent members as of June 2022 | | RAIC mission statement |
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Concluding Remarks



Key Takeaways

* There is no one-fits-all solution for Al fairness, the best solution
depends on the context of use case

* Assessing and mitigating unwanted biases without the sensitive
attribute is hard

* For now, a process-driven approach with human oversight (Al
governance) is the best practice available

* We need to continue to invest in research to ensure
a robust/sustainable implementation of Trustworthy Al - an opportunity
for a better world



Al Fairness

Marcin.DETYNIECKI@axa.com

Boris.RUF@axa.com
15 December 2022



