

EBA and EIOPA Regular Use

DPM 2.0 - Refit project
Metamodel Documentation

METAMODEL VERSION: 2.0.0-PWD7

METAMODEL D IAGRAMS DATE: 28/04/2023

DOCUMENT VERSION AND STATUS: V.0.7, Public Working Draft

DOCUMENT DATE: 22/05/2023

V.0.7, Public Draft, 22/05/2023 2

EBA and EIOPA Regular Use

Contents
1 Introduction .. 3

1.1 Document history ... 3

1.2 Abbreviations and glossary ... 3

1.3 Target audience .. 5

1.4 Out of scope of this document ... 5

2 DPM Refit project .. 6

2.1 Goals, history and status quo of DPM .. 6

2.2 Aim and deliverables of DPM Refit ... 8

3 Metamodel overview .. 10

4 Metamodel , ownership and supportive documentation ... 12

4.1 Metamodel metadata, ownership, and supportive documentation 12

4.2 Historisation .. 25

4.3 Derivation .. 29

4.4 Naming convention ... 29

5 Metamodel components .. 31

5.1 Glossary ... 31

5.2 Grouping, rendering, and packaging of information requirements 41

5.3 Identification and description of each reported value ... 53

5.4 Operations on data ... 56

V.0.7, Public Draft, 22/05/2023 3

EBA and EIOPA Regular Use

1 Introduction
This document contains description of the Data Points Metamodel created as a result of the DPM

Refit project, a common initiative of the EBA and EIOPA.

1.1 Document history
Version Date Description

0.1 28/02/2022 First internal working draft. Presents proposed skeleton of the
document structure. Provides description and outlines intended
content of each section. This version uses simplified diagrams of the
metamodel as their comprehensive form is under finalization at the
moment of preparing this first internal draft.

0.2 30/06/2022 Second internal working draft. Extended to cover all sections in more
detail as well as updated to resemble the most recent version of the
meta-model diagram and status of discussions.

0.21 13/07/2022 Second internal working draft updated with comments and changes to
versioning of SubCategories and removal of ItemHierarchy as well as
addressing other editorial changes.

0.3 30/09/2022 Third internal working draft including comments from the first review.
Metamodel description has been updated and completed for all parts
(for metamodel diagram as of 15/09/2022).

0.4 14/11/2022 Fourth internal working draft including updates to the model between
15/09/2022 and 10/11/2022.

0.5 14/12/2022 Internal working draft including updates to the model between
10/11/2022 and 14/12/2022.

0.6 31/03/2023 Internal working draft including some updates to the model between
10/11/2022 and 31/03/2023.

0.7 22/05/2023 Public draft including updates to the model as of 30/04/2023.

1.2 Abbreviations and glossary
Term Description

COREP COmmon REPorting framework used by credit institutions and investment firms
to report their solvency ratio to NCAs and EBA under the CRR/CRD. It is a part of
the EBA DPM model.

CRR/CRD Regulatory reporting regime consisting of the Credit Requirements Directive (CRD
IV) and Capital Requirements Regulation (CRR) aiming to improve banks’ ability to
bear risks by strengthening their solvency and liquidity position as well as their
risk management. EBA has been developing DPM models covering CRR/CRD
requirements.

DPM Model Data Point Metamodel – in this abbreviation it refers to a metamodel (a model of
the model – statements and structures that hold definition of information
requirements) and a methodology (understood as a set of standardized methods
used to solve certain problem).

DPM ML Data Point Metamodel l Language - structured representation of operations (data
quality checks and data transformations rules) in the DPM metamodel and
resulting databases.

DPM
semantics

When followed by word “semantics ”, DPM refers to specific information
definitions required in reporting frameworks (e.g. CRDIV COREP/FINREP, Solvency
II, etc) modelled according to the DPM methodology and represented under DPM
metamodel;

V.0.7, Public Draft, 22/05/2023 4

EBA and EIOPA Regular Use

DPM
database

Database whose structure follows DPM metamodel and can contain DPM
semantical contents.

DPM Studio
(formerly
DRR)

Technical solution that is being developed by the EBA and EIOPA to facilitate
definition and management of DPM semantics using the DPM (meta)model as
described by this document, including generation of various outputs (e.g. XBRL
taxonomies representing information requirements).

DPM XL DPM eXpression Language – formal syntax and grammar for representing
operations (data quality checks and data transformations rules) by the EBA and
EIOPA under DPM after refit.

EBA European Banking Authority1
ECB European Central Bank2
EIOPA European Insurance and Occupational Pensions Authority3
EUCLID EUCLID stands for European Centralised Infrastructure for Supervisory Data. It is

the platform and data infrastructure developed and used by the EBA to gather
and analyse regulatory data from a wide range of financial institutions. It covers
supervisory, resolution, remuneration and payments data.

Eurofiling Open joint initiative collaborating with regulatory bodies on EU level in regulatory
space. Consist of regulatory reporting experts - delegates of NCAs and
representatives of market stakeholders – financial institutions, consultancy
companies and IT solution providers. Supports developments in regulatory area
for transparency and standardization.

FINREP FINancial REPorting framework is used by certain credit institutions, banks and
investment firms for prudential reporting following the International Financial
Reporting Standards (IFRSs) to NCAs and EBA under the CRR/CRD. It is a part of
the EBA DPM model.

Information
requirements

Description of data requested from reporting entity to be provided to recipients
(e.g. international or national competent financial authorities) to support their
activities (e.g. supervisory processes or preparation of statistical reports on macro
and micro levels). They are typically defined by policy departments in cooperation
with data users and published in regulations (e.g. legal acts of European
Commission or national legislation).

Modeller A person (usually SME) creating and maintaining DPM semantic definitions.
NCA Regulatory body on the national level; in context of the EU and financial market

these are typically Central Banks and Financial Services Authorities.
Pension
Funds

Information requirements reported by occupational pensions. It is one of the
components of the EIOPA DPM contents.

PEPP KID/PR Pan-European Personal Pension Product (PEPP) Key Information Document (KID)
and Prudential Reporting (PR). They are components of the EIOPA DPM
semantical model.

Report data to be exchanged by reporting entities to regulators based on the DPM
semantic definitions

Reporting
entity

entity whose data is submitted in a report, e.g. financial institutions such as
commercial banks, insurance undertakings, investment firms, etc

SDMX Statistical Data and Metadata eXchange4 – standard facilitating exchange of
statistical metadata and data.

1 https://www.eba.europa.eu/
2 https://www.ecb.europa.eu/ecb/html/index.en.html
3 https://www.eiopa.europa.eu/
4 https://sdmx.org/

https://www.eba.europa.eu/
https://www.ecb.europa.eu/ecb/html/index.en.html
https://www.eiopa.europa.eu/
https://sdmx.org/

V.0.7, Public Draft, 22/05/2023 5

EBA and EIOPA Regular Use

SMEs Subject Matter Experts – persons knowledgeable in certain area; in this document
typically in regulatory reporting domain i.e. understanding content of information
requirements.

SRB Single Resolution Board5
Solvency II Solvency II is a regime and a reporting framework introduced to harmonize

prudential reporting of insurance and reinsurance undertakings in EU. It is the
first and major component of the EIOPA DPM model.

XBRL eXtensible Business Reporting Language6 – open technical standard enabling
metadata and data exchange; applied by the EBA, EIOPA and various NCA for
collecting data from filers.

1.3 Target audience
This document is aimed at all potential users of the DPM of all the stakeholders involved in

processing regulatory data - from initial data definition regulators processes, through its preparation

and reporting by reporting institutions and subsequent storage, analysis and disclosure to all

recipients of regulatory data. It includes people with different roles, including SMEs, policy

regulators, data architects and designers/developers of IT solutions. It serves reporting, collection

and data storage systems, validation and calculation engines, data exploration and disclosures

platforms.

It is assumed that readers of this document are familiar with the current (i.e. pre-Refit) DPM

methodology, metamodel, and DPM models defined by the EBA and EIOPA.

1.4 Out of scope of this document
This document focuses on explanation of the DPM metamodel resulting from DPM Refit project,

touching also on its impact on DPM methodology. This document does not cover the following topics

that will be addressed by separate documentation in due time:

- The xBRL Architecture and its mapping of DPM artefacts to XBRL specification and certain

XBRL taxonomy architecture (e.g. applied by the EBA/EIOPA for serialization in XBRL of

current DPM models, already published78,

- the APIs to provide means for metadata exchange and approaches for standardization of

definitions (e.g. introduction of a single wide common dictionary on EU level) including

technological solutions that could be leveraged for these purposes (e.g. registries driven by

APIs), processes and approaches related to extension of DPM models (e.g. by importing and

reusing fragments of other models), which will be published in due time,

- the governance of DPM metamodel, which aims to assure collaboration between authorities

on the maintenance of commonly used DPM Standard metamodel and pursuing the goal of

enabling DPM to be spread and used by different stakeholders serving its digital processes

and helping people to better understand regulatory data in all phases of regulatory life cycle.

This documentation will be published in due time.

5 https://www.srb.europa.eu/en/about
6 https://www.xbrl.org/the-standard/what/an-introduction-to-xbrl/
7 https://www.eiopa.europa.eu/tools-and-data/supervisory-reporting-dpm-and-xbrl_en
8 https://www.eba.europa.eu/eba-publishes-draft-version-its-revised-taxonomy-architecture

https://www.srb.europa.eu/en/about
https://www.xbrl.org/the-standard/what/an-introduction-to-xbrl/
https://www.eiopa.europa.eu/tools-and-data/supervisory-reporting-dpm-and-xbrl_en
https://www.eba.europa.eu/eba-publishes-draft-version-its-revised-taxonomy-architecture

V.0.7, Public Draft, 22/05/2023 6

EBA and EIOPA Regular Use

2 DPM Refit project

2.1 Goals, history and status quo of DPM
The Data Point Modelling methodology and metamodel were developed with the aim to enable

representation of information requirements by uniquely and explicitly identifying each piece of

reportable data (so-called “data points”) using consistently defined terms gathered in subsets

sharing common semantics for their management and maintenance. The set of definitions created

using the DPM methodology and the DPM metamodel are referred to as Data Point Model (DPM).

The primary purpose of the DPM was to support the data exchange by providing means for data

recipients (e.g. regulators) to define requested data, so that reporting entities (e.g. banks or

insurance undertakings) understand better the requirements as was meant by the data definition

modellers.

The development of a standardized approach for metadata modelling according to a common

metamodel started organically under the auspices of the Eurofiling in 2008, taking advantage of

several national implementations, e.g. Matrix model9 created and used by the Banca d’Italia (BdI). It

aimed at changing the approach to metadata modelling from form-centric (i.e. driven by data

presentation) to data centric (i.e. focused on data definition irrespective of the way data is rendered

to users).

Another important goal was to shift the data definition exercise from IT specialists to business

domain experts. The first models that followed this approach, back then referred as Data Point

Structures, were developed in 2009 and proved its usability in the context of the development of

FINREP. Several European regulators involved in the Eurofiling initiative started research as a follow-

up to these developments to confirm applicability of the methodology and metamodel in their

specific use cases, including prudential reporting, statistics, credit register, etc. Data Point Models

have been developed at European level by the EBA (CRDIV), EIOPA (Solvency II, Pension Funds, etc.)

as well as by various national competent authorities that extend EBA/EIOPA deliverables or build

their models from scratch, not only in Europe but across the world.

The methodology and metamodel was finally called Data Point Modelling and documented in detail

in the “European Data Point Methodology for Supervisory Reporting” 10 for the European Committee

for Standardization (CEN). In this form it has been also recently adopted as standard 511611 of the

International Organization for Standardisation (ISO).

Since 2013, EBA and EIOPA have been storing the result of the data definitions of their regulatory

reporting frameworks in a DPM database following their similar specific metamodel structures.

Challenges and limitations of the current DPM

With increasing number, variety, and size of implementations, DPM has faced several challenges and

a few shortcomings gained importance.

The following is a not-exhausting list of observed challenges for the new DPM.

9 See https://www.bancaditalia.it/statistiche/raccolta-dati/sistema-informativo-
statistico/modellazione/matrixmod.pdf
10 http://cen.eurofiling.info/ : http://cen.eurofiling.info/wp-content/upLoads/data/CWA_XBRL_WI001-1-E.pdf
11 https://www.iso.org/standard/80873.html

http://cen.eurofiling.info/
http://cen.eurofiling.info/wp-content/upLoads/data/CWA_XBRL_WI001-1-E.pdf
https://www.iso.org/standard/80873.html

V.0.7, Public Draft, 22/05/2023 7

EBA and EIOPA Regular Use

 The recent trends and changes related to so-called RegTech and SupTech show increasing

needs of regulators in more precise data definitions (i.e. detailed of definitions) and on

describing deeper the information need in the infrastructures of the data submitters. At the

same time, there is a higher stress on boosting more powerful analytical usage of this

information in Business Intelligence solutions and in particularly on the use of Artificial

Intelligence and Machine Learning techniques. Therefore, the potential application and

utility of the reporting chain based on DPM is much wider than initially targeted.

 The DPM versioning and historization mechanisms have been an important feature which

can be improved. This is a core aspect for Regulators as regulatory reporting not only needs

to evolve easily across time but also to be able to track back each piece of information for

analytical purposes.

 Defining and maintaining data quality checks (data validations) and data derivations

(calculation or transformations) can be improved in order to share uniform formats

implementations and less resource-consuming task for both regulators and reporting

entities.

 DPM is technology-neutral and should be unbiased by any technical implementation. The

extensible Business Reporting Language (XBRL) standard that has been used in the majority

of DPM implementations on a technical level do not need to include structures and

properties that are required for its subsequent use in serialization as XBRL taxonomies. XBRL

is currently going through phases of technological evolutions aimed at decoupling semantics

from syntax. This initiative called Open Information Model (OIM) already delivered

specifications for data exchange using JSON and CSV (in addition to XBRL-XML) and works

are planned to do the same for XBRL taxonomies. Moreover, it is expected and desired that

a modelling methodology, such as the DPM, shall support various other formats commonly

used for financial data exchange, for example SDMX.

 The implementations of DPM are not unified. Heterogeneous solutions have been

developed in terms of models, processes, formats, and software solutions. Even for

applications that commenced approximately at the same time and were carried by two

sister organizations - EBA and EIOPA – their DPM models have no harmonised components

at the moment, and each has specific flavours. This resulted from various factors, including

but not limited to, 1) the nature of requested data, which is more granular in Solvency II

compared to Capital Requirements Directive (CRD) IV, with many “open” tables; and 2) the

fact that CRD / Capital Requirements Regulation (CRR) is comprised of less homogenous

frameworks (Common Reporting (COREP), Financial Reporting (FINREP), etc.) which in

Solvency II instead were consolidated under a single framework, enabling a more

predictable scheduling of releases and life cycles. These above resulted in entirely

independent developments and models not only not sharing common definitions but also

differing significantly in some of the basic modelling approaches (e.g. the construction of

metrics), publication formats, etc.

 There is a number of features that were not known/required to be address when creating

DPM and that gained on importance during its use in production. These include the DPM

model relate to the need of defining relationships between normalized open tables or

linking table variants, the ability to define terms whose definition comprises of a few other

terms (so called compound terms), defining relations between data points, modelling of

value restrictions, etc.

V.0.7, Public Draft, 22/05/2023 8

EBA and EIOPA Regular Use

As a result of the above challenges and taking advantage of other important developments and

revamps conduced or planned (e.g. European Centralized Infrastructure for Supervisory Data

(EUCLID)12, Solvency 2020 review13, XBRL Open Information Model (OIM) specifications14), EBA and

EIOPA decided to commence works on the DPM Refit initiative to further facilitate understanding

and exchange of data in financial sector.

2.2 Aim and deliverables of DPM Refit
The DPM Refit project is aimed at enhancing DPM to continue successfully serving its role as a

methodology and metamodel for metadata modelling while overcoming some of its known

limitation and addressing missing functionalities.

In addition to redesigning the DPM metamodel to cope with its known shortcomings and

foreseeable challenges, DPM after refit shall:

- provide means for creation of a unified metamodel that is independent of the purpose,

characteristics or scope of data (e.g. prudential, statistical, transactional, reference and

master), covering from highly aggregated data points up to very granular data sets,

- support various data exchange standards (as a result of being defined in technology agnostic

manner); in particular XBRL and SDMX,

- better support the whole reporting lifecycle, from data definition and metadata

management, to data collection, exploration, derivation, and dissemination. These are the

core components of metadata-driven reporting platforms, providing foundations for the

development of solutions for the definition and application of DPM models,

- enable consistent modelling of EBA and EIOPA reporting requirements and thus a

convergence of methods, models, processes and tools used for the development of data

dictionaries and related regulatory products.

- Enable consistent modelling of other regulatory frameworks that need to be integrated

assuring non redundancy, efficient use of ressources and better availability of data

Discussions about the DPM Refit were initiated by the EBA and EIOPA in the fall 2019 and continue

with the active participation of delegates, of the ECB and, since the DPM Refit workshop held in

December 2021, with inputs from NCAs.

The year 2020 was focussed on the definition of requirements and discussions about the metamodel

of DPM Refit, addressing core content, i.e., the identification of information requirements using

glossary terms and arranged in tables. In 2021 the metamodel was enhanced with the definition of

an approach for metadata historization and the inclusion of operations that are relevant for data

quality checks and data derivation rules). These developments were announced to the NCAs in a

workshop in March 2022 and publicly during Eurofiling Online Session in June 202215. Further works

in the summer of 2022 resulted in the finalization of the approach as regards the ownership of

definitions, translations and assigning concepts with references (e.g., to legislation or other

12
https://www.eba.europa.eu/sites/default/documents/files/document_library/News%20and%20Press/Commu
nication%20materials/Factsheets/1025098/Factsheet%20on%20EUCLID.pdf
13 https://www.eiopa.europa.eu/browse/solvency-ii/2020-review-of-solvency-ii_en
14 https://www.xbrl.org/the-standard/what/introducing-the-
oim/#:~:text=The%20Open%20Information%20Model%20(or,standard%2C%20without%20referencing%20syn
tax%20specifics.
15 https://2022.eurofiling.info/

https://www.eba.europa.eu/sites/default/documents/files/document_library/News%20and%20Press/Communication%20materials/Factsheets/1025098/Factsheet%20on%20EUCLID.pdf
https://www.eba.europa.eu/sites/default/documents/files/document_library/News%20and%20Press/Communication%20materials/Factsheets/1025098/Factsheet%20on%20EUCLID.pdf
https://www.eiopa.europa.eu/browse/solvency-ii/2020-review-of-solvency-ii_en
https://www.xbrl.org/the-standard/what/introducing-the-oim/#:~:text=The%20Open%20Information%20Model%20(or,standard%2C%20without%20referencing%20syntax%20specifics
https://www.xbrl.org/the-standard/what/introducing-the-oim/#:~:text=The%20Open%20Information%20Model%20(or,standard%2C%20without%20referencing%20syntax%20specifics
https://www.xbrl.org/the-standard/what/introducing-the-oim/#:~:text=The%20Open%20Information%20Model%20(or,standard%2C%20without%20referencing%20syntax%20specifics
https://2022.eurofiling.info/

V.0.7, Public Draft, 22/05/2023 9

EBA and EIOPA Regular Use

underlying documentation). The resulting DPM Refit metamodel diagrams are described in this

documentation.

At the moment of the preparation of this documentation, the DPM Refit metamodel has been also

undergoing severe testing using a set of use cases and through migrating of existing DPM models to

the DPM Refit structures (and vice versa to ensure parallel support during transition period).

.

V.0.7, Public Draft, 22/05/2023 10

EBA and EIOPA Regular Use

3 Metamodel overview
The DPM metamodel after refit consists of four main components, each serving a dedicated

purpose:

1. A glossary of terms (5.1) which are classified in Categories (5.1.1) of Properties (5.1.4) and

Items (5.1.2) used in the description of information requirements.

2. Rendering (5.2.1) of information requirements in Tables (5.2.1.1) that can be Grouped

(5.2.1.4) and Related (5.2.1.5 and 5.2.1.6). These are packaged (5.2.2) in Frameworks

(5.2.2.1) and Modules (5.2.2.2) which represent data sets (subsets of information

requirements) broken down by subject, scope, etc. This component supports the process of

definition of information requirements and discovery of what is expected to be reported. It

may serve data entry/presentation purposes.

3. The identification and description (using glossary terms) of each individual piece of

information requirements (5.3) that is to be provided with value in a report. These are

referred to as Variables (5.3.1) and help in data exchange by providing single unique

reference for each reported value as well as enable tracking changes in definitions resulting

from fixes or other modifications in modelling to support data lineage. Variables typically

result from Table Headers (5.2.1.2) or Table Cells (5.2.1.3).

4. The definition of operations on data (5.4) i.e., data quality checks (validations) and data

transformation/derivations rules. Operations comprise of Operators (e.g. =, +, -) and

Operands that may refer to glossary terms, rendering structures or Variables.

Metamodel entities identified as Concepts (4.1.2) can be associated with Owner (i.e. maintaining

organization) and be provided with supportive documentation such as references to legal acts,

regulations, standards, etc. (4.1.3.2). Concepts are identified by their Code (4.4). Characteristics that

explain Concepts (e.g., Name, Description, etc) can be translatable (4.1.3.1).

Certain metamodel entities can be (re)used across components, e.g. Context and its Composition

(5.1.5) can apply to glossary, rendering and Variables entities.

Metamodel entities or relationships between entities (e.g., associations between various types of

Concepts) can be modified in time and are therefore subject to historization by means of having

Versions relating to Releases (4.2.1).

Figure 1 below presents an overview of the DPM metamodel described in detail in the next section

of this document.

V.0.7, Public Draft, 22/05/2023 11

EBA and EIOPA Regular Use

Figure 1. DPM metamodel overview.

V.0.7, Public Draft, 22/05/2023 12

EBA and EIOPA Regular Use

4 Metamodel , ownership and supportive documentation

4.1 Metamodel metadata, ownership, and supportive documentation

4.1.1 Metamodel metadata entities
As presented on the left-hand side of Figure 1, DPM defines a few entities that provide information

about the metamodel itself. These entities comprise of:

- DPMClass,

- DPMAttribute,

- DataType,

- SubdivisionType,

- Language,

- Operator,

- OperatorArgument

and are presented on Figure 2.

Figure 2. Metamodel metadata entities.

Content of the metamodel metadata entities is predefined as described in the next sections of this

document, hence any changes can be introduced only by the DPM metamodel authors.

From the Modellers’ perspective these entities are fixed and must not be edited.

4.1.1.1 DPM Class and Attribute

DPMClass metamodel metadata entity lists of all entities of the DPM metamodel.

DPMClass.Name corresponds to the name of each entity in the metamodel.

Some entities listed in DPMClass are Concepts (4.1.2), i.e. these model entities that:

 can be identified with and Owner or inherit Owner from other Concepts,

 may have references (4.1.3.2),

 contain attributes that are translatable (4.1.3.1).

V.0.7, Public Draft, 22/05/2023 13

EBA and EIOPA Regular Use

Concepts are those DPM metamodel entities that have a single Primary Key. The only exception is

SubCategoryItem which has two keys, however it contains attributes that are translatable (4.1.3.1)

and therefore can be considered as a Concept.

DPMClasses whose DPMClass.HasReferences equals TRUE can be provided with references (as

described in 4.1.3.2).

DPMClasses which are Concepts may include DPMClass.OwnerClassID identifying another Concept

class from which their Owner is inherited (as described in 4.1.2).

Table 1 lists DPMClasses which are Concepts.

Name Type OwnerClass (inherited from) HasReferences

Organisation Independent Yes

Category Independent Yes

Subcategory Attributive Yes

Property SubType Item Yes

Item Independent Yes

Framework Independent Yes

Module Attributive Framework Yes

ModuleVersion Attributive Module Yes

TableGroup Independent Yes

Table Independent Yes

TableVersion Attributive Table Yes

TableAssociation Associative Yes

Header Attributive Table Yes

HeaderVersion Attributive Header Yes

Cell Associative Table Yes

Variable Independent Yes

VariableVersion Attributive Variable Yes

CompoundKey Independent Yes

Context Independent Yes

Operation Independent Yes

OperationVersion Attributive Operation Yes

OperationScope Associative Operation Yes

Document Independent No

DocumentVersion Attributive Document No.

Subdivision Attributive DocumentVersion No

Release Independent Yes

SubCategoryItem Associative SubCategory Yes

Table 1. List of DPMClasses that are Concepts, along with their attributes.

DPMAttribute metamodel metadata entity lists attributes of each metamodel entity from DPMClass.

DPMAttribute.Name corresponds to the name of attribute of entity in the metamodel.

The national language of the DPM models, at least for the EBA and EIOPA, applied on all entity

attributes such as Name, Description, Label, etc. is English. Attributes whose

DPMAttribute.HasTranslation equal TRUE (e.g. Name, Description, Label, etc.) can be provided with

translations to other national languages (4.1.3.1).

For representation of the OperationVersion.Expression the EBA and EIOPA use the DPM XL syntax.

However, using the same mechanism as for national languages translations, operations can be

represented in other syntaxes or formats (e.g. XBRL, SQL, Python).

V.0.7, Public Draft, 22/05/2023 14

EBA and EIOPA Regular Use

The list of translatable attributes for each DPMClass is presented in Table 2.

Name DPMClass HasTranslations

Name Category Yes

Description Category Yes

Name SubCategory Yes

Description SubCategory Yes

Name Item Yes

Description Item Yes

Label SubCategoryItem Yes

Name Framework Yes

Description Framework Yes

Name ModuleVersion Yes

Description ModuleVersion Yes

Name TableGroup Yes

Description TableGroup Yes

Name TableVersion Yes

Description TableVersion Yes

Label HeaderVersion Yes

Name TableAssociation Yes

Description TableAssociation Yes

Name VariableVersion Yes

Description OperationVersion Yes

Expression OperationVersion Yes

Name Document Yes

TextExcerpt Subdivision Yes

Name Organisation Yes

Acronym Organisation Yes

Description Release Yes

Table 2. List of translatable DPMAttributes.

Relationship between DPMClass, DPMAttribute and Concept is presented on Figure 3.

Figure 3. Concept, DPMClass and DPMAttribute entities.

4.1.1.2 Data Type

DataType entity provides the list of data types that can be used on the following metamodel entities:

- Property (5.1.4),

- OperationAttribute (Error! Reference source not found.).

As presented on Figure 2, each DataType is identified by Code and explained by Name.

The list of available data types is presented in see Table 3.

Code Name Parent Data Type

i integer

r decimal

s string (non empty)

V.0.7, Public Draft, 22/05/2023 15

EBA and EIOPA Regular Use

b boolean

t true boolean

dt date time

d date date time

e enumeration string

m monetary

p percentage

u URI

o ordinals

es string (including empty string)

Table 3. List of data types.

Data types can be derived (by restriction) from one another. For example, True data type is a

restriction of a Boolean data type to only one value (i.e. Boolean TRUE).

DataType can be deactivated (4.2.3) by setting IsActive to FALSE which indicates that such

deactivated data type can no longer in use in modelling of metadata. Data types listed in Table 3 are

all active at the moment of release of this documentation.

4.1.1.3 Subdivision Type

SubdivisionType is used for structuring of references to documentation (4.1.3.2) and as presented on

Figure 4, is referred from Subdivision.

Figure 4. SubdivisionType entity.

SubdivisionType is identified by its Name and further explained by Description. The list of

SubdivisionTypes is presented in Table 4.

Name Description

Chapter For a publication that uses chapters, this part should be used to capture this information. Because chapters
are not necessarily numbers, this is a string.

Article Article refers to a statutory article in legal material.

Section Section is used to capture information typically captured in sections of legislation or reference documents.

Subsection Subsection is a subsection of the section part.

Paragraph Paragraph is used to refer to specific paragraphs in a document.

Subparagraph Subparagraph of a paragraph.

Clause Subcomponent of a sub paragraph.

Subclause Subcomponent of a clause in a paragraph.

Appendix Refers to the name of an Appendix, which could be a number or text.

Example Example captures examples used in reference documentation; there is a separate element for Exhibits.

Page Page number of the reference material.

Exhibit Exhibit refers to exhibits in reference documentation; examples have a separate element.

Footnote Footnote is used to reference footnotes that appear in reference information.

Sentence In some reference material individual sentences can be referred to, and this allows them to be referenced.

URI Full URI of the reference such as "http://www.fasb.org/fas133".

Requirement A suggestion of a new model entry for consideration / to be addressed in the next releases.

Table 4. List of subdivision types.

V.0.7, Public Draft, 22/05/2023 16

EBA and EIOPA Regular Use

4.1.1.4 Language

Language entity enables translation to different national languages (4.1.3) and therefore its content

is populated based on the ISO 639-1 alpha-2 language codes and names.

Additionally, it enables representation of Expressions of Operations (5.4.1) in various technical

implementations, e.g. SQL, XBRL, VTL, etc or other than DPM XL formal languages (syntaxes based

on specified grammar).

Language is identified by LanguageCode and its Name as presented on Figure 5.

Figure 5. Language entity.

4.1.1.5 Operator and Operator Argument

Operators (as presented on Figure 6) can applied by:

- SubCategoryItem (to indicate arithmetic operations between Items in a SubCategory, see

5.1.3),

- OperationNode (in which case Operators may be more complex and include multiple

OperatorArguments, see 5.4.1).

V.0.7, Public Draft, 22/05/2023 17

EBA and EIOPA Regular Use

Figure 6. Operator and OperatorArgument entities.

The list of Operators is presented in Table 5.

Name Symbol Type

Unary plus + Numeric

Addition + Numeric

Division / Numeric

Unary minus - Numeric

Subtraction - Numeric

Absolute value abs Numeric

Numeric minimum min Numeric

Multiplication * Numeric

Numeric maximum max Numeric

Square root sqrt Numeric

Aggregate maximum max_aggr Aggregate

Aggregate minimum min_aggr Aggregate

Equal to = Comparison

Less than equal to <= Comparison

Greater than equal to >= Comparison

Element of in Comparison

Is null isnull Comparison

Greater than > Comparison

Less than < Comparison

Not equal to != Comparison

Match characters match Comparison

And and Logical

Or or Logical

Not not Logical

Exclusive or xor Logical

Sum sum Aggregate

Count count Aggregate

Where where Clause

V.0.7, Public Draft, 22/05/2023 18

EBA and EIOPA Regular Use

Name Symbol Type

Get get Clause

If then else if-then-else Conditional

Filter filter Conditional

Time shift time_shift Time

Rename rename Clause

RenameNode node Clause

Grouping clause group by Clause

Persistent assignment <- Assignment

Table 5. List of Operators.

As presented on Figure 6, more complex Operators are composed of multiple arguments. The list of

OperatorArguments is provided in Table 6.

Operator (FK) Order IsMandatory Name

Unary plus 1 1 operand

Addition 1 1 left

Addition 2 1 right

Division 1 1 left

Division 2 1 right

Unary minus 1 1 operand

Subtraction 1 1 left

Subtraction 2 1 right

Absolute value 1 1 operand

Numeric minimum 1 1 operand

Multiplication 1 1 left

Multiplication 2 1 right

Numeric maximum 1 1 operand

Square root 1 1 operand

Aggregate maximum 1 1 operand

Aggregate maximum 2 1 grouping_clause

Aggregate maximum 3 1 component

Aggregate minimum 1 1 operand

Aggregate minimum 2 1 grouping_clause

Aggregate minimum 3 1 component

Equal to 1 1 left

Equal to 2 1 right

Less than equal to 1 1 left

Less than equal to 2 1 right

Greater than equal to 1 1 left

Greater than equal to 2 1 right

Element of 1 1 operand

Element of 2 1 set

Is null 1 1 operand

Greater than 1 1 left

Greater than 2 1 right

Less than 1 1 left

Less than 2 1 right

Not equal to 1 1 left

Not equal to 2 1 right

Match characters 1 1 operand

Match characters 2 1 pattern

And 1 1 left

And 2 1 right

Or 1 1 left

Or 2 1 right

Not 1 1 operand

Exclusive or 1 1 left

Exclusive or 2 1 right

Sum 1 1 operand

V.0.7, Public Draft, 22/05/2023 19

EBA and EIOPA Regular Use

Operator (FK) Order IsMandatory Name

Sum 2 1 grouping_clause

Sum 3 1 component

Count 1 1 operand

Count 2 1 grouping_clause

Count 3 1 component

Where 1 1 operand

Where 2 1 condition

Get 1 1 operand

Get 2 1 component

If then else 1 1 condition

If then else 2 1 then

If then else 3 1 else

Filter 1 1 selection

Filter 2 1 condition

Time shift 1 1 operand

Time shift 2 1 period_indicator

Time shift 3 1 shift_number

Time shift 4 1 dimension

Rename 1 1 operand

Rename 2 1 node

RenameNode 1 1 old_name

RenameNode 2 1 new_name

Table 6. List of OperatorArguments.

4.1.2 Concept and Ownership
As explained in the previous section, information requirements and hence data models are

developed by various authorities. It is therefore necessary to identify Organisation that defined a

given classification, business term, data set, table, etc, and is responsible for its maintenance.

For this purpose, among others, DPM defines Concept entity that represents any identifiable object

in a model (i.e. receiving Code/Name assigned by a modeller). In technical terms – all metamodel

entities that have a single primary key are Concepts (it is important to note though, that some of

such entities are merely versions of another object in time - 4.2.1). As Concepts are also prescribed

by the metamodel for managing references (4.1.3.2) and translations (4.1.3.1), all DPMClasses

(4.1.1.1) who have HasReferences set to TRUE or of which at least one attribute has HasTranslations

set to TRUE, are also represented in the model as Concepts.

All metamodel entities have RowGUID attribute16 which is globally unique. This identifier is referred

from Concept.GUID.

16 It is also used for the log of changes (non-normative part of the model, see 0).

V.0.7, Public Draft, 22/05/2023 20

EBA and EIOPA Regular Use

Figure 7. Concepts

As presented on Figure 8, Concept can be assigned with an Owner indicating Organisation that has

defined and manages it. DPM metamodel restricts each Concept to have one and only one Owner.

V.0.7, Public Draft, 22/05/2023 21

EBA and EIOPA Regular Use

Figure 8. Concept as DPMClass and its Owner Organisation.

For some Concepts information about Owner is inherited from other Concepts. This is identified by

DPMClass.OwnerClassID and documented in Table 1. Modellers are therefore enabled to assign

Owner only for Concepts not having parent class while any children of an upper-level class inherit

this information from their parent (i.e. their Owner is the same as the Owner of their parent

DPMClass).

Owner Organisations are described by their Name and Acronym (e.g. “European Banking Authority”

and “EBA” respectively). Organisation is a Concept itself and therefore these attributes are

translatable (4.1.3.1).

It is possible that one Organisation may indicate itself as Owner of Concepts that are not yet defined

in DPM model by their legitimate Owners (for example standardisation organizations such as ISO,

LEI, IFRS, etc). Should such Concepts be subsequently added by their rightful Owners, DPM

metamodel enables linking such definitions to existing duplicates using ConceptRelation entity

(4.1.4).

For technical reason it is considered that all identifiers (primary key IDs of all metamodel entities) in

the physical database implementation are unique for each Concept. This shall simplify the process of

merging models from various databases maintained individually by different Organisations. To

achieve this, the first three digits of any ID indicate the Owner (as prescribed by

Organisation.IDPrefix) while the other digits ensure uniqueness for each DPMClass for that Owner

(e.g. sequential numbers).

DPM Metamodel contains predefined Organisations as illustrated in Table 7.

Name Acronym IDPrefix

DPM Metamodel DPMM 100

European Banking Authority EBA 101

European Insurance and Occupational Pensions Authority EIOPA 102

Table 7. DPM Metamodel predefined Organisations.

DPM Metamodel Organisation host definitions of “Properties”, “Not applicable” and “Templates”

Categories (5.1.1).

V.0.7, Public Draft, 22/05/2023 22

EBA and EIOPA Regular Use

4.1.3 Supportive documentation

4.1.3.1 Translations

The primary language of modelling, at least for the EBA and EIOPA DPM models, is English.

Therefore, all attributes like Name, Label, Description, Value, etc across all DPM metamodel entities

are provided in English.

Attributes that are expected or enabled to be translatable are marked as

DPMAttribute.HasTranslation equal TRUE (4.1.1.1).

As presented on Figure 9, Translation identifies Concept (Translation.ConceptID, 4.1.2) along with

translated attribute of this Concept (Translation.AttributeID, 4.1.1.1), the national language of

translation (Translation.LanguageCode, 4.1.1.4) and the Organisation that provided and manages

this translation (Translation.TranslatorID, 4.1.2). It is therefore possible that an attribute of a

Concept has more than one translation defined by different Organizations in one language.

Figure 9. Concepts' attributes translations.

4.1.3.2 References to documentation

Information requirements result from various documents: legal acts, regulations, standards, change

requests, requirements, etc. Concepts (4.1.2) belonging to DPMClasses whose HasReferences equals

TRUE (4.1.1.1) can be associated with references containing their definitions, guidelines, or other

explanation.

V.0.7, Public Draft, 22/05/2023 23

EBA and EIOPA Regular Use

Figure 10. References.

As presented on Figure 10, Document identifies a piece of legislation (e.g. EU Directive, ITS, etc) or

other report by its Name and (optionally) Code. Type informs on the kind of the Document (e.g.

“legal_document”, “change_request”). DocumentVersion serves historization purposes and indicates

PublicationDate and Version information of Document along with its Code which may also vary in

time.

As explained in section 4.1.1, SubdivisionType provides a list of typical parts that structure a piece of

a legislation or other report. They are used in Subdivision to resemble arrangement and structure of

Document by providing ability to refer to any individual Subdivision by its Number and providing

means of nesting them in higher-level Subdivisions (hence hierarchical structure of

Subdivision.ParentSubdivisonID). Complete address of Subdivision position in the document is also

provided by Subdivision.StructurePath.

Subdivision (typically leaf-level) may contain the actual wording of the document fragment it

represents (Subdivision.TextExcerpt).

Subdivisions are linked to Concepts via Reference (one Concept can have many References and one

Reference can be reused across many Concepts).

Document, DocumentVersion and Subdivision are Concepts and therefore can have Owner

(DocumentVersion and Subdivision inherits Owner from Document as per Table 1) and some of their

attributes (e.g. TextExcerpt) can have translations (see Table 2 and section 4.1.3.1).

4.1.4 Concept relation
DPM metamodel provides means for Concepts to be related to one another by means of

ConceptRelation that can be referred from all RelatedConcepts as presented on Figure 11.

This generic approach enables linking Concepts within and across Owners and/or representing

various DPMClasses (4.1.1.1). For example, it can be used to connect identical Concepts defined by

V.0.7, Public Draft, 22/05/2023 24

EBA and EIOPA Regular Use

different Owners, or to identify the same Concept but modelled differently or even at different

modelling levels (e.g. in logical and physical implementation).

Figure 11. Concept and ConceptRelation.

If a relation has a direction, RelatesConcept.IsRelatedConcept equal TRUE identifies a Concept at the

target of this relation, otherwise it is FALSE (default value) for relation’s source Concept or in case

relation has no direction/is bidirectional.

ConceptRelaton.Type identifies the type of relation. There are three generic relation types (i.e. that

can be applied to various classes of Concepts - 4.1.1.1):

- “equivalent_concept” indicate that Concepts linked through such relation type (whatever

DPMClass they represent) are semantically the same. This relation is bidirectional hence

IsRelatedConcept is FALSE for all RelatedConcepts,

- “version_fix” and “version_new” applies typically to Versions of various Concepts (e.g.

ModuleVersions, TableVersions or HeaderVersions) and informs that the target of the

relation is created:

o to correct a modelling problem (“version_fix”) of the source Concept or

o as an evolution of the source Concept (“version_new”) due to e.g. revision of

information requirements;

This information along with Releases (4.2.1) is essential in determining applicability of

glossary (5.1) Concepts in modelling of rendering (5.2.1) and Variables (5.3.1) in time.

In addition to the above three generic relation types, DPM metamodel predefines also relation types

that can be used to relate specific Concepts, i.e.:

- SubCategories – “subCategoryMaster_version” and “subCategoryRendering_version” (5.1.3),

- Variables – “factVariable_keyVariable” and “variable_attributeVariable” (5.3.1),

- Tables – “table_variant” (5.2.1.1).

Detailed semantics of these relation types are explained in the referred sections.

V.0.7, Public Draft, 22/05/2023 25

EBA and EIOPA Regular Use

Modellers can extend ConceptRelation.Type with other options that they need or find useful.

4.2 Historisation
Information requirements may change in time. Updates to the DPM models can be published by

their authors in scheduled or ad hoc manner.

Moreover, Modellers may decide to modify the way they represent glossary terms or information

requirements e.g. due to bug fixes or to improve the model during periodic revisions. Some Concepts

(4.1.2) can therefore become obsolete in time. However, to enable resubmissions of data for past

periods or to support time series analysis, Concepts of published models are never deleted as it shall

always be possible by reading the model to learn the modelling and information requirements

applicable at any moment of time.

4.2.1 Releases
Release represents each publication of a model17. Each Release is identified by Code and Date.

As presented on Figure 12, Release is applied to metamodel entities which can be:

 versions of certain classes of Concepts, i.e:

o SubCategoryVersion,

o TableVersion,

o HeaderVersion,

o VariableVersion,

o ModuleVersion,

o OperationVersion,

 connections between Concepts:

o ItemCategory,

o PropertyCategory,

o SuperCategoryComposition,

o TableGroupCompositon,

o CompountItemContext,

 individual Concepts life cycle: TableGroup.

The purpose of Release is to support documenting evolution of Concepts or their composition and to

help identifying how a glossary term, a table content or a variable was represented at a point in

time.

17 This is typically an external publication i.e. in a public repository or on the website of the model author
organisation, however it may be also used to support internal workflows and processes withing these
organisations.

V.0.7, Public Draft, 22/05/2023 26

EBA and EIOPA Regular Use

Figure 12. Metamodel entities whose historization is supported by reference to Release.

On all entities where it applies, Release is referenced twice, mandatorily as StartRelease and

optionally as EndRelease. Additionally, in ItemCategory and PropertyCategory, StartRelease is part of

their primary key. In cases where StartRelease is not part of the primary key, the metamodel

employs as Primary Key one-field ID for this specific concept version. Alternatively, this Primary Key

could be the combination (Version_Invariant_ID, StartRelease). For example, in TableVersion the

Primary Key is TableVID but it could also be TableID and StartReleaseID instead. To make it explicit

on DPM Refit implementation level, one can define a Unique Index containing the alternate Primary

Keys whenever required (note that an exception to this is StartRelease in TableGroup in which case

StartRelease has an informational role only).

As a Concept (4.1.2), Release can be assigned with an Owner, and can be linked to Reference (4.1.3.2)

while its Name and Description attributes are translatable (4.1.3.1).

IsCurrent flag indicates a Release that in a given publication of the model is the most recent one.

DPM does not impose any specific semantic versioning approach. Instead, it shall be driven by

individual requirements of modellers, their organisations and the life cycle of information

requirements represented in the model. In case when subsequent Releases may introduce changes

to past (not only the direct preceding) Releases and modellers decide to track this information

V.0.7, Public Draft, 22/05/2023 27

EBA and EIOPA Regular Use

(instead of correcting/updating these past Release), it may be necessary to employ in addition the

“version_fix” and “version_new” Concept relationship types (4.1.4). Reference and submission dates

(4.2.2) also play an important role in determining Concepts’ applicability.

Releases, by design, do not address model administration purposes i.e. storing of creation or

modification timestamps, reflecting a workflow or stages of the development process (internal and

public working drafts). Neither are the Releases aimed at supporting handling of temporary

metadata (e.g. work-in-progress modelling along with internal comments). The latter however can

be reflected in the log of changes (4.2.5).

4.2.2 Application dates
Life cycle of certain model Concepts does not necessarily follow publication timelines or dates

indicated by Release (4.2.1). This applies in particular to Modules (5.2.2.2) that may be indicated as

applicable for reporting from a point of time in the future or until a specified date, independent from

the model publication. For this reason, ModuleVersion definition contains FromReferenceDate

attribute and may include ToReferenceDate attribute as presented on Figure 13.

Figure 13. Metamodel entities with “from” and “to” application dates.

Similar independence from the model publication date applies to Operations (5.4.1). A version of a

data quality check can be indicated as applicable for reports submitted after a certain date

(OperationScope.FromSubmissionDate) while transformation rules execution can be constrained by

reference dates (VariableCalculation.FromReferenceDate and VariableCalculation.ToReferenceDate).

These dates support model users in understanding the scope of reportable information at any

moment of time: any date falls in some reference period of a ModuleVersion and hence the

applicable TableVersions and OperationVerisons are those attached to it via

ModuleVersionComposition and OperationScopeComposition respectively. In case of the latter, users

shall also consider the status (as the OperationVersion as it can be deactivated, see 4.2.3) and if a

report is to be sent after the OperationScope.FromSubmissionDate.

V.0.7, Public Draft, 22/05/2023 28

EBA and EIOPA Regular Use

4.2.3 Deactivations
As presented Figure 14, the following metamodel entities: DataType, Category and Item (hence

indirectly also Property) can be marked as deactivated by setting IsActive attribute to FALSE. This

deactivation implies that they must not be used in modelling of any future information

requirements.

Figure 14. Metamodel metadata and glossary entities containing IsActive attribute enabling their deactivation.

IsActive attribute is also present on OperationScope (see Figure 13) where it determines if

OperationVersion (referred from the OperationScope) shall apply to a ModuleVersion (linked to

OperationScope via OperationScopeComposition) for any reports sent after the

OperationScope.FromSubmissionDate.

In contrast to DataType and glossary Concepts where deactivation is final, OperationScope enables

re-activation of OperationVersion for ModuleVersion.

4.2.4 Dependencies
Historisation dependencies follow the dependencies between entities in the metamodel (identified

for example by Ownership inheritance, see 4.1.1.1, 4.1.2). For example, deactivating of Category

results in deactivation of all Items, SubCategories and Properties associated with it (unless they are

reassigned to another Category). It is also expected that assigning Concept with EndRelease shall

impact EndRelease of all dependent Concepts. For example, Property (represented as Item) with

EndRelease for a given Category must not be used with Items of that Category on any TableVersion

or HeaderVersion in any subsequent release. Same applies for StartRelease which indicates a first

published version starting from which a glossary Concept can be used in description of Tables or

Variables. The rule does not have to be obeyed for bug fixing of past versions or non-glossary

Concepts. For example, ModuleVersion may refer to TableVersions that don’t exist for a Release for

which a ModuleVersion is defined (for example to reintroduce a Table that was replaced in some

previous Release by another version).

4.2.5 Log of changes (non-normative)
EBA and EIOPA introduced in the DPM Refit metamodel a non-normative (i.e., not aimed to become

part of the DPM standard) component to store information about changes made in models.

V.0.7, Public Draft, 22/05/2023 29

EBA and EIOPA Regular Use

ChangeLog entity contains information about modifications made to the content of model entities or

their attributes. In case it is published with a model, it may contain all alterations (including

temporary modelling) or be limited only to final changes (e.g., difference between the published

Releases).

As presented on Figure 15, ChangeLog indicates a Timestamp for each modification made and an

individual User who introduce this modification. This latter information is aimed at internal use only,

not to be shared in the public releases.

Figure 15. Change log component (non-normative).

In order for the ChangeLog to contain modifications to all DPM metamodel entities (i.e., not only to

those representing Concepts but also those containing associations of Concepts and many-to-many

relationships) and refer to them using a single identifier, each entity in the physical implementation

of the metamodel contains RowGUID attribute which is a unique identifier referenced by

ChangeLog.RowGUID.

4.3 Derivation
In is assumed that majority of the metamodel entities is populated by Modellers, most likely with

support of dedicated tooling (e.g., DPM Studio). Several entities however, depending on the

modelling process applied, can be computed based on entries from other entities. This concerns for

example generation (and suggestion for reuse) of Variables (5.3.5) for Table Headers or Cells, or

assembling Property-Item pairs in Contexts when defining Table Headers as well as automated reuse

of existing ContextCompositons (5.1.5)

4.4 Naming convention
Majority of metamodel entities that are Concepts are identified by Modellers by their Code and

Name.

V.0.7, Public Draft, 22/05/2023 30

EBA and EIOPA Regular Use

Name is a short, but at the same time meaningful and distinguishable human readable description of

a given Concept. Name shall be unique in the context of a given DPMClass. For example, Item.Name

shall be unique within a Category it belongs but not necessarily across all Categories to allow for

homonyms.

Codes can be meaningless and take alphanumeric sequence unless they are clearly defined in

underlying information requirements (e.g. Table and their row/column codes) or in cases, when

according to some convention, they can be abbreviations of Name (e.g., capitalised starting letters of

each word of Name) or follow commonly applied codes (e.g. ISO codes for countries, currencies,

NACE codes, etc). Codes for each DPMClass must be unique for an Owner. For example, one

Category must not have two or more Items with the same Code, unless these Items are defined by

different Owners.

Many Concepts can be also assigned with Description which is a more verbose explanation of the

meaning of this Concept.

Specific implementations may restrict the length and format of Codes, Names and Descriptions to

follow database type constraints or replace disallowed characters unsupported by a given

technology (e.g., XML).

V.0.7, Public Draft, 22/05/2023 31

EBA and EIOPA Regular Use

5 Metamodel components
As described in chapter 3 of this document, DPM metamodel consists of four main components.

Sections of this chapter explain each of these components in detail, one by one. Links embedded in

text shall help navigation as components are heavily interrelated.

5.1 Glossary
The purpose of the Glossary component is to enable definition and management of terms and

notions that are later used to describe information requirements.

As presented on Figure 16 and explained in the next sections, Glossary consist of Categories (5.1.1)

that in turn comprise of Items (5.1.2). Items of Category can be grouped in SubCategories (5.1.3)

belonging to this Category. Items in SubCategories can be arranged in hierarchies

(SubcategoryItem.ParentItemID). SubCategories may be related to one another (by means of

ConceptRelations - 4.1.4). Property (5.1.4) may be associated to Category and as a consequence

provide perspective for Items of this Category when applied in description of information

requirements (in Tables - 5.2.1.1, their Headers - 5.2.1.2, or Cells - 5.2.1.3, and in Variables - 5.3.3).

Each Property is also an Item of a dedicated Category (e.g., to enable their grouping in SubCategories

for further use as restrictions of information requirements). Category can comprise of other

categories (SuperCategoryComposition - 5.1.7). Compound Items (5.1.6) can be constructed from

Property-Item pairs (Context and ContextComposition - 5.1.5).

V.0.7, Public Draft, 22/05/2023 32

EBA and EIOPA Regular Use

Figure 16. Glossary component entities and relations.

5.1.1 Category
Categories typically represent (code) lists of items sharing common semantics or grouped based on

their similar nature. These Items (5.1.2) can be defined in the model, one-by-one, in which case

Category is enumerated (IsEnumerated set to TRUE). Alternatively, Category can serve only as a

“placeholder” for such values, and not name them individually, which results in a not enumerated

Category (IsEnumerated set to FALSE). The content of not enumerated Category is either not known

for Modellers (as it can be for example reporting entity specific) or it is impractical to list all its values

as Items due to their large number or due to high and frequent volatility of its composition.

V.0.7, Public Draft, 22/05/2023 33

EBA and EIOPA Regular Use

Figure 17. Category, Property and Item.

As presented on Figure 17, Categories are also associated with Properties (5.1.4) via

PropertyCategory entity.

In case of enumerated Category, Properties related to it provide perspective to Items from this

Category when used in description of information requirements. For example, “Spain” Item of

“Countries” Category can be associated with “Issuer residence” Property but also with “Broker

residence” or “Location of stock exchange” Properties when describing a single piece of reportable

information (a Variable – see 5.3.1).

Non enumerated Category may gather Properties providing similar type of characteristic when used

in description of information requirements. These could be for example different types of codes that

identify instruments (e.g. ISIN, SEDOL, CUSIP, etc) or entities (e.g. LEI, Tax Identification Numbers,

etc). Non enumerated Category may also gather quantitative Properties.

There are three Categories predefined in the DPM Metamodel and hosted by the DPM Metamodel

Owner (Table 8).

Code Name Description

_PR Properties Contains Items (5.1.2) which are counterparts of Properties (5.1.4) in physical implementation of
the DPM metamodel.

_NA Not applicable Contains Items which do not belong to any specified Category such as those that are typically
used only in dropdowns on Headers or Variables. It is also linked by Properties that do not
belong to any real Category. Such enumerated Properties can refer to Items from Categories:
"Not applicable", "Properties" and in such case they can also use Items of other Categories, in
particular by being linked to such mixed SubCategory (5.1.3). It is not a semantically meaningful
Category.

_TE Templates Contains Items which represent Templates (TableGroups - 5.2.1.4 or Tables - 5.2.1.1) for
purposes of resembling Filing indicator Variables (5.3.2).

Table 8. Predefined DPM Metamodel Categories.

Category can refer to external data (IsExternalRefData set to TRUE) identified in such case by

RefDataSource. This could be, for example, so called ‘master’ data (e.g. information about reporting

V.0.7, Public Draft, 22/05/2023 34

EBA and EIOPA Regular Use

entities and their reporting obligations) or reference data (registries of companies, information

associated with LEI, list of instruments by ISIN codes, etc.). Such information can be used by

Operations that handle external data (5.4.2).

Category whose Category.IsSuperCategory is set to TRUE is a Super Category (5.1.7).

Modellers identify Categories by Code and Name and may provide Description (4.4).

Category is a Concept and must be assigned with Owner (4.1.2). It can be linked to Reference

(4.1.3.2) and its Name and Description attributes are translatable (4.1.3.1).

Category can be deactivated (4.2.3).

5.1.2 Item
Item is each enumerated value of Category (5.1.1) to which, as presented on Figure 17, it is linked via

ItemCategory. This association is versioned by referring to Release (4.2.1), which means that Item

can change Category in time (following bug fixing or revisions of models for improvements).

Modellers identify Items by Code and Name and may provide Description (4.4). Item Code is assigned

on relation to a Category (ItemCategory.Code) which supports ensuing its uniqueness in context of a

given Category.18

Each enumerated Category can have one Item assigned as its default value

(ItemCategory.IsDefaultItem set to TRUE). Such default Item is assumed to be implicitly present for

all Properties (5.1.4) linked to this Category (via PropertyCategory) whenever these Properties are

not explicitly indicated in description of Fact Variable, and - if applicable – any of its Key or Attribute

Variables (5.3.1), with another Item or SubCategory (5.1.3).

Super Category (5.1.7) can be assigned with a dedicated default Item (i.e. one of the Items belonging

to Category represented by Super Category). Otherwise, any of the default Items of Categories that

constitute a Super Category can be assumed its default Item.

In physical implementation of the DPM metamodel by the EBA and EIOPA, Items whose

Item.IsProperty is set to TRUE are counterparts of Properties (5.1.4) and belong to a dedicated

Category (see Table 8).

Depending on implementation, ItemCategory.Signature can be concatenation Codes or IDs of

Category and Item prefixed with their Owners (Codes or IDs). This is derived data that helps referring

to Items or Properties in a unique and compact manner from Operations (5.4.1). The pattern for

Signature for Properties applied in the EBA and EIOPA models is as follows:

{Organization.Acronym}_{ItemCategory.Code} (e.g. “eba_SE”) while for other Items:

{Organisation.Acronym}_{Category.Code}:{Organization.Acronym}_{ItemCategory.Code} (e.g.

“eiopa_BL:eiopa_x2”) where Organization.Acronym is of Owner (4.1.2) of Category or Item it

prefixes.

Items can be compound (Item.IsCompound set to TRUE) i.e. constructed from more than one

Property-Item pairs (5.1.6).

Item can be deactivated (4.2.3).

18 This is required for example to enable serialisation in XBRL format, in situation where Item changes Category
to one for which its code is already occupied by another Item.

V.0.7, Public Draft, 22/05/2023 35

EBA and EIOPA Regular Use

Item is a Concept and must be assigned with an Owner (4.1.2).

Item and ItemCategory can be linked to Reference (4.1.3.2).

Item.Name and Item.Description attributes are translatable (4.1.3.1).

5.1.3 SubCategory
SubCategory is a (sub)set of Items (5.1.2) of Category (5.1.1). They can be used to group and further

arrange Items (which - in case of some Categories - can be numerous), in smaller thematical or

otherwise related groups, for easier management, navigation and browsing of a model.

Figure 18. SubCategory composition of Items and its versioning.

Modellers identify SubCategory by Code and Name and may provide Description (4.4).

SubCategories are versioned as SubCategoryVersion referring to a Release (4.2.1).

As presented on Figure 18, Items are assigned to SubCategoryVersion via SubCategoryItem, which

enables representation of hierarchical dependencies between Items (by means of

SubCategoryItem.ParentItemID), optionally providing information about arithmetical relations. The

latter is achieved by setting a SubCategoryItem.ComparsionOperator (one of: “>”, “>=”, “=”, “=<”,

“<”) indicating if children SubCategoryItems elements (i.e. identifying this SubCategoryItem as their

ParentItemID) contribute to a given SubCategoryItem completely (equal), as a subset (less then or

equal) or a superset (greater than or equal). Positive or negative contribution is identified on each

child SubCategoryItem.ArithmeticOperator with “+” or “-” respectively. Note that only selected

Operators (4.1.1.5) are allowed on SubCategoryItem.ComprarisonOperator and

SubCategoryItem.ArithmeticOperator.

Order of Items in SubCategory shall be defined globally i.e. take sequential numbers for all (not each)

branches/levels disregarding nesting.

Apart from arranging and documenting glossary, SubCategories can provide enumeration options

(list of available/selectable values in form of subsets of Items) for table Headers (5.2.1.2) and thus

V.0.7, Public Draft, 22/05/2023 36

EBA and EIOPA Regular Use

resulting from them Variables (5.3.3). In such application an Item participating as an option in a

dropdown can be assigned with a different label (by means of SubCategory.Label) than its globally

applied Item.Name. Consuming application shall utilise this functionality and render dropdown

options using SubCategory.Label that matches the wording prescribed in the underlying regulations,

instructions, etc. Definition of such dropdown Headers (and Variables) must include identification of

Property and SubCategory (consuming application reassemble these into Property-Item pairs for data

exchange).

SubCategories that are related to each other can be linked though ConceptRelation (4.1.4).

ConceptRelation.Type includes by design the following options (subject to extension by Modellers)

dedicated to defining relationships between SubCategories:

- “subCategoryMaster_version” – indicates that SubCategory identified as a source of the

relation (RelatedConcept.IsRelatedConcept equal to FALSE) is a “master” (i.e. complete

subset of Items for specific classicisation e.g. list of all countries in the World) while

SubCategory identified as a target (RelatedConcept.IsRelatedConcept equal to TRUE) some

‘version’ of this ‘master’ (e.g. list of countries in Europe); such linking shall help maintaining

of ‘version’ when composition of a related ‘master’ is changed (e.g. automatically apply

modification in both when any is changed by the Modeller),

- “subCategoryRendering_restriction” - indicates that the target SubCategory (pointed by

RelatedConcept.IsRelatedConcept equal to TRUE) shall be used by consuming application for

rendering purposes (e.g. presentation in Table Cells - 5.2.1.3) whenever another

SubCategory indicated by the source of the relationship (i.e. pointed by

RelatedConcept.IsRelatedConcept equal to FALSE) is identified on a SubCategory of

HeaderVersion (5.2.1.2) and/or VariableVersion (5.3.5) that defines/corresponds to this Cell;

this mechanism enables displaying to users hierarchically structured dropdowns when not all

options (e.g. only leaves and/or certain branches) are actually ‘selectable’ and thus

reportable.

SubCategoryVersions can also be linked with “version_fix” and “version_new” concept relation types

to distinguish between patches and evolutionary changes respectively, in case it can’t be achieved by

means of Releases.

SubCategory is a Concept and must be assigned with an Owner (4.1.2), which is inherited by

SubCategoryVersion.

SubCategory and SubCategoryVersion can be linked to Reference (4.1.3.2).

SubCategory.Name, SubCategory.Description and SubCategoryItem.Label are translatable (4.1.3.1).

5.1.4 Property
Properties can be quantitative or qualitative which in the metamodel (Figure 17) is represented by

IsMetric attribute with values TRUE or FALSE respectively.

Quantitative Properties are used to identify the basics of what is measured. For this purpose, they

provide information about expected data type of observation (by referring to Data Type, 4.1.1) and

indicate if requested value is determined at a point of time (PeriodType set to Instant) or for a period

of time (PeriodType set to Duration).

Qualitative Properties are used in descriptive observations. In many cases they are applied in

addition to quantitative Properties to further describe information requirements by providing

V.0.7, Public Draft, 22/05/2023 37

EBA and EIOPA Regular Use

perspective to Items (in Context 5.1.5) or serving as Key or Attribute Variables to Fact Variables

(5.3.2).

Properties must be explicitly indicated on each Variable (5.1.8, 5.3.3) and optionally, indirectly, in

Contexts (5.1.5) referred by Variable. Table Headers (5.2.1.2) and Variables which are dropdowns

apply Properties along with SubCategories (5.1.3) listing enumerable options.

Properties may refer to Categories (e.g. for the purpose of their grouping or to indicate applicable

Items). In case of the EBA and EIOPA models, Properties that don’t belong to any natural Category

are applied to “Not applicable” Category (see Table 8).

When used in rendering or in definition of Variables, Properties can provide perspective only to

Items of a Category (or Super Category 5.1.7 that this Category is part of) that they are linked to via

PropertyCategory for a Release (4.2.1) for which this rendering, and variables are defined. For

patches to past Releases, “version_fix” relation type (4.1.4) may be applied if required (as it is for

example planned by EIOPA) to help identifying the glossary state that shall be applied in the

modelling of the fix (e.g., by enabling determining the Release of the fixed TableVersion and hence

the PropertyCategory or ItemCategory assignment applicable for that Release).

DataType (4.1.1.2) of Properties that refer to enumerated Categories (i.w. whose IsEnumerated

attribute equals TRUE) is “Enumeration”.

Properties that are related to a Category containing Compound Items (5.1.6) have IsComposite

attribute set to TRUE.

In physical implementation of the DPM metamodel by the EBA and EIOPA, each Property has a

counterpart Item (5.1.2) whose IsProperty equals TRUE and that belongs to a dedicated Category

(see Table 8). Therefore, Property receives Owner (4.1.2), Code, Name, Description (4.4),

deactivation information (4.2.3) as well as translations (4.1.3.1) and references (4.1.3.2) from that

Item.

5.1.5 Context and ContextComposition
Context serves various roles in the metamodel and can be used by objects from components other

than Glossary, i.e. rendering (5.2.1) and Variables (5.3). As presented on Figure 19 and described in

this section the main role of Context is to gather Property-Item pairs.

V.0.7, Public Draft, 22/05/2023 38

EBA and EIOPA Regular Use

Figure 19. Context and ContextComposition.

Context through ContextComposition identifies at least one Property-Item pair. One Property (5.1.4)

can be used in a Context only once and only with one Item (5.1.2). This Item needs to belong to

Category (5.1.1) to which Property refers (via PropertyCategory) in given Release (4.2.1).

ContextSignature is composed by concatenation of Codes or IDs of Properties and Items (including

identification of their Owners - 4.1.2) from ContextComposition of a Context. In case of the EBA and

EIOPA models, signature is based on IDs according to the following pattern: {PropertyID_ItemID}

separated with # and order by PropertyID, e.g. 117_2375#251_1528#326_5216#. Such approach

supports identification and reuse of Contexts.

Context as Concept can be assigned to Owner which must be the same as the Owner of:

- Compound Item (5.1.6),

- Table – for TableVersion and HeaderVersion (5.2.1.1), or

- Variable – for VariableVersion (5.3.1).

for which this Context was created.

5.1.6 Compound Items
Compound Items are Items whose IsCompoundItem is set to TRUE.

Compound Items are used to simplify representation of complex terms in a model.

Definition of Compound Item is composed of two or more Property-Item pairs. Each pair is identified

in ContextComposition and gathered in Context (5.1.5). To enable for this composition to be

versioned, Compound Item links to Context via CompoundItemContext that relates to Release (4.2.1)

as presented on Figure 20.

V.0.7, Public Draft, 22/05/2023 39

EBA and EIOPA Regular Use

Figure 20. Compound Item.

An example of Compound Item is financial instrument “Treasury bills”. When broken down, its

definition consists of the following Property-Item pairs:

- “Instrument type”: “Debt security”,

- “Issuer sector”: “Central government”,

- “Original maturity”: “< 1 year”.

When used in modelling, Compound Items19 reduce complexity of the model enabling its

decomposition in atomic Items if needed. They also enable definition of dropdowns where individual

options are composed of several Items (5.1.2) for various Properties (5.1.4).

As Item, Compound Item belongs to Category (which can be the same as any of its contributing Items

or a different one) and can be applied to Properties of this Category it belongs. It also inherits all

other characteristics of Item.

5.1.7 Super Category
Super Category is a Category (5.1.1) whose Category.IsSuperCategory is set to TRUE.

As presented on Figure 21, Super Category must be identified on

SuperCategoryComposition.SuperCategoryID and results in union of all Categories referred by

SuperCategoryComposition.CategoryID. As a consequence, all Properties (5.1.4) and, in case any of

referred Categories is enumerated, Items (5.1.2) indirectly belong to such Super Category.

19 This mechanism enables also definition of Compound Properties, but as all Properties belong to one
dedicated Category the more natural way of identifying that one Property combines semantics of two or more
other Properties would be to assign it as a Parent Hierarchy Item of the Items representing the combined
Properties.

V.0.7, Public Draft, 22/05/2023 40

EBA and EIOPA Regular Use

Figure 21. Super Category.

Super Category can have its own Properties and, in case it is enumerated, also Items.

Composition of a Super Category in terms of referred Categories is versioned through

SuperCategoryComposition which refers to Release (4.2.1).

Super Category enables applying Items from more than one Category with Property belonging to any

of these Categories or to this Super Category.

Similarly to Compound Items (5.1.6), Super Categories may help simplifying modelling by reducing

the number of Properties in rendering (5.2.1) or in Variable definition (5.3.3). They also support

creation of dropdowns comprising of Items from various Categories which can be applied on

SubCategories (5.1.3) of Super Category and subsequently used by Table Headers (5.2.1.2) or

Variables (5.3.1).

Default Item of a Super Category (marked as its default by ItemCategory.IsDefaultItem equal TRUE)

can be any of the Items of referred Categories’ or a dedicated Item defined for Super Category. If not

explicitly indicated, it is one (any) of the default Items of the referred Categories’.

5.1.8 Application of glossary terms to other components of the metamodel
Properties (5.1.4), Items (5.1.2) and SubCategories (5.1.3) are used in the modelling process to

describe information requirements.

As presented on Figure 22 and explained in the next sections of this document they are typically

assigned by Modellers to TableVersions (5.2.1.1), HeaderVersions (5.2.1.2) and VariableVersions

(5.3.3) when reflecting/constructing tabular representation of information requirements or defining

a Variable (if the latter is not derived from rendering - see 4.3 and 5.3.5).

V.0.7, Public Draft, 22/05/2023 41

EBA and EIOPA Regular Use

Figure 22. Application of Glossary terms to other components of the model.

Qualitative Properties are referred directly from TableVersion, HeaderVersion and VariableVersion.

The same applies to quantitative Properties of non-enumerated Categories (5.1.1) and these

Properties of enumerated Categories that are applied as dropdowns on table Headers or Variables.

In case of the latter, the list of Items to appear as dropdown values is defined by SubCategory

identified on these entities (i.e. HeaderVersion.SubCategoryVID, VariableVersion.SubCategoryVID).

Property must be indicated on every Variable.

Property-Item pairs are assigned to TableVersion, HeaderVersion and VariableVersion through

Contexts (5.1.5).

They are packaged thematically (in Frameworks - 5.2.2.1)

5.2 Grouping, rendering, and packaging of information requirements
Information requirements defined in regulations are typically represented in tabular format and

grouped by subject, area or scope. Therefore, as presented on Figure 23, DPM Metamodel enables

definition of Tables (5.2.1.1) that can be related to one another and gathered in TableGroups

(5.2.1.4).

Tables can be also assembled in Modules (5.2.2.2) in order to indicate what information is required

to be reported by which institutions and under what circumstances for a given reference date.

V.0.7, Public Draft, 22/05/2023 42

EBA and EIOPA Regular Use

Modules are packaged thematically in Frameworks (5.2.2.1), where Framework typically represents a

piece of legislation that resulted in the need for definition of a set of Tables to be reported for these

Modules.

Tables are built from Headers (5.2.1.2) of columns and optionally rows or sheets, on intersection of

which are Cells (5.2.1.3). These Cells, but also Key Headers in case of open Tables, result in Variables

(5.3.1) representing each reportable value.

Figure 23. Information requirements component entities and relations.

5.2.1 Grouping and Rendering
Rendering component of the metamodel serves an important role in the modelling process.

Modellers define tabular views following the underlying regulations and subsequently, as presented

on Figure 24, assign these Tables (5.2.1.1) and their Headers (5.2.1.2) with terms from Glossary (5.1)

to express their meaning. Table Cells (5.2.1.3) result from Headers.

Table Headers or Cells result in Variables (5.3.1).

V.0.7, Public Draft, 22/05/2023 43

EBA and EIOPA Regular Use

Tables can be grouped (5.2.1.4), associated to one another in terms of primary/foreign keys,

optionality and cardinality of relations, subtyping, etc. (5.2.1.5) or related to one another in other

ways (5.2.1.2).

Figure 24. Rendering component entities and relations.

5.2.1.1 Table and TableVersion

As presented on Figure 25, Table can be flagged as abstract (Table.IsAbstract set to TRUE) or non-

abstract (Table.IsAbstract set to FALSE). Abstract Tables are defined when a single tabular view

defined in a regulation needs to be decomposed in more than one Table, due to for example:

- DPM modelling assumptions and constraints, disallowing for example one Property (5.1.4) to

be used on a Header (5.2.1.2) of a row and a Header of a column of one Table at the same

time,

- normalization of tables to minimize redundancies and dependencies, in which case

Table.IsNormalised set to TRUE indicates that a non-abstract Table resulted from

normalization of an abstract Table.

V.0.7, Public Draft, 22/05/2023 44

EBA and EIOPA Regular Use

In case when there is no need to split a tabular view defined in legislation to more Tables (i.e.

abstract and non-abstract Tables are identical), the model does not define any abstract Table for this

tablular view and contains only one non-abstract Table.

Information about relations between abstract Table and resulting decompose non-abstract Tables is

defined on TableVersions (see below) of non-abstract Tables by indicating there the originating

abstract Table on TableVersion.AbstractTableID.

While both, abstract and non-abstract Tables can be assigned with Headers (5.2.1.2) and Cells

(5.2.1.3), only non-abstract Tables can be modelled with glossary (5.1) concepts (i.e. their Headers

may refer to Properties, SubCategories, Contexts and link to Variables).

Table.IsFlat flag set to TRUE indicates that Table modelling is done using Properties only and contains

no Contexts which is typical case for statistical tables as defined for example in SDMX. This may

impact the behaviour of Operations (e.g. filter function).

Tables are versioned by means of TableVersion referring to a Release (4.2.1). This enables tracking

evolution of a Table in time for both – graphical representation of a tabular view as well as changes

in its modelling (i.e. referenced glossary terms). “version_fix” and “version_new” Concept relations

(4.1.4) may be used to support this tracing in more complex scenarios (e.g. when updating past

versions).

Modellers identify Table by Code and Name and may provide Description (4.4). These attributes are

defined on TableVersion corresponding to that Table, to enable their change in time and recoding all

historization.

HasOpenColumns, HasOpenRows and HasOpenSheets indicate if a Table is open - i.e. contains

Headers (5.2.1.2) which are Key Variables to other Headers representing Fact Variables (5.3.2) - and

in which direction it is opened (as columns, rows and/or sheets - Table can be open in one, two or all

three directions).

Figure 25. Table and TableVersion.

TableVersion may link to glossary terms - Properties (5.1.4) or Property-Item pairs gathered in

Contexts (5.1.8). This information is applied to all Headers (5.2.1.2) and hence all Cells (5.2.1.3) of

that TableVersion.

TableVersion.KeyID links to CompondKey (5.3.4) identifying Key Variables applicable to Fact Variables

(5.3.2) of this TableVersion.

V.0.7, Public Draft, 22/05/2023 45

EBA and EIOPA Regular Use

Table is a Concept that can be assigned with an Owner (4.1.2). TableVersion receives Owner from

Table it corresponds to. Both Table and TableVersion can be linked to Reference (4.1.3.2).

TableVersion.Name and TableVersion.Description are translatable (4.1.3.1).

5.2.1.2 Header, TableVersionHeader and HeaderVersion

Header represents each “Row”, “Column” or a “Sheet” as per Header.Direction.

As Header description and definition may change in time (due to bug fixes, improvements to

modelling, etc), each Header results in HeaderVersion. HeaderVersion is versioned by means of

reference to Release (4.2.1).

Figure 26. Header, TableVersionHeader and HeaderVersion.

As presented on Figure 26, HeaderVersion identifies Header Code and provides its Label (the latter is

translatable, 4.1.3.1).

HeaderVersion links to glossary terms (5.1) that provide semantics to explain the meaning of each

header. As explained in section 5.1.8 this is achieved by referring from HeaderVersion to:

- Property (5.1.4) that is quantitative (metric) or qualitative but non-enumerated or

enumerated Property in which case it is required to also indicate SubCategory,

- Property-Item pairs gathered in Contexts (5.1.5).

IsKey set to TRUE implies that Header represents a Key Variable (5.3.2). As a result,

HeaderVersion.KeyVariableVID of this Header points to VariableVersion (5.3.3) that is a Key Variable.

Such Header is not linked from any Cell (5.2.1.3). Only headers who contribute to definition of a Fact

Variable result in Cells.

V.0.7, Public Draft, 22/05/2023 46

EBA and EIOPA Regular Use

HeaderVersion refers to TableVersion (5.2.1.1) via TableVersionHeader. This enables reuse of

Headers across TableVersions and provides information about changes in structure of any Table in

time. As Headers’ structure can be rearranged between TableVersions, the following attributes are

applied on TableVersionHeader:

 nesting of Headers (ParentHeaderID),

 rendering of Parent Header before (ParentFirst set to TRUE) or after its Children,

 Order of presentation of Headers,

 marking Headers as “grouping only” – i.e. not resulting in cells (IsAbstract set to TRUE),

 indicating if values reported for Key Variable corresponding to this Header or Fact Variables

in Cells resulting from Headers must be unique (IsUnique set to TRUE).

Owner (4.1.2) of Header (and hence HeaderVersion) must be the same as Owner of Table which this

Header belongs to (Header.TableID).

As Concepts, Header and HeaderVersion can be linked to Reference (4.1.3.2). HeaderVersion.Label is

translatable (4.1.3.1).

5.2.1.3 Cell and TableVersionCell

As presented on Figure 27, Cell must refer to at least one leaf-level Column or Row Header (5.2.1.2)

but may also point to two or maximum three (i.e. one for each: Column, Row and Sheet).

Key Headers (5.2.1.2) do not result in Cells.

Figure 27. Cell and TableCellVersion.

V.0.7, Public Draft, 22/05/2023 47

EBA and EIOPA Regular Use

As described in 5.2.1.1, Tables may be modified in time by means of TableVersion referring to

HeaderVersion (5.2.1.2) through TableVersionHeader. As a result, Cells can refer to various

TableVersions via TableVersionCell, while still representing the same Header(s).

TableVersionCell indicates:

- a code of a Cell (if exists): CellCode; such information may be useful for example in mapping

to legislation if it contains such codes or to legacy systems or exchange formats which are

forms driven and therefore base on cells coordinates;

- if a Cell is mandatory: IsNullable set to FALSE; report must contain data for Variable (5.3.1)

corresponding to this Cell (this is subject to the presence of respective filing indicators);

- if a Cell is not reportable: IsExcluded set to TRUE; data for Variable corresponding to this Cell

is not requested for this Table; such Cell is typically displayed as greyed out or criss-crossed;

- that a Cell does not result in any Variable (5.3.1): IsVoid is set to TRUE; i.e. its definition

stemming from concatenation of semantics indicated by glossary (5.1) terms applied on

Headers on which intersection this Cell is defined is illogical (e.g. “Equity instruments” issued

by “Government” with certain “Maturity period”); note that TableVersionCell whose IsVoid is

set to FALSE must point to VariableVersion (5.3.3) resulting from/corresponding to this Cell;

- if a value reportable for a Cell is a “positive” or “negative” number: imposed by Sign

attribute; note that this and more complex constraints related to the expected value

reportable for a given Cell are imposed by means of Operations (5.4.1).

In case Cell results from Header whose TableVersionHeader.IsUnique is set to TRUE then values

reported in each Cell across all Cells for that Header must be unique.

Owner (4.1.2) of a Cell (and therefore TableVersionCell for that Cell) must be the same as Owner of

Table which this Cell belongs to (Cell.TableID).

As Concepts, Cell and TableVersoinCell can be linked to Reference (4.1.3.2).

5.2.1.4 Table Group

As presented on Figure 28, TableGroups gathers Tables (5.2.1.1) via TableGroupComposition.

TableGroupComposition.Order informs about the sequence of Tables in TableGroup that shall be

applied for example when displaying Tables under TableGroup in user interface. Composition of

TableGroup in terms of Tables it gathers may change between Releases (4.2.1).

V.0.7, Public Draft, 22/05/2023 48

EBA and EIOPA Regular Use

Figure 28. TableGroup and TableGroupComposition.

TableGroups are assigned with Code and Name and may also be provided with Description.

TableGroups can also gather other TableGroups by being indicated as their Parent (ParentGroupID).

This nesting can have multiple levels.

TableGroups may be created for various purposes as indicated by TableGroup.Type. DPM

metamodel envisages at least the following options (that can be further extended by metadata

modellers):

- “templateGroup”,

- “template”,

- “templateVariant”,

- “templateScope”.

For example, in case of EIOPA DPM models, TableGroup of Type “templateGroup” gathers

TableGroups which are “templates”, that in turn result in multiple “templateVariant” Type

TableGroups.

TableGroups of Type “templateScope” can also be nested. DPM XL syntax enables using their Codes

in Operation.Expression instead of Table Codes. This mechanism simplifies definition of Operations

that apply to multiple Tables belonging to such TableGroup or any of its descendant TableGroups

whose Type is also “templateScope”20.

TableGroups are relatively stable metamodel Concepts. Nevertheless, their application can be

controlled by indicating Release in which they were created or stopped being used (which can be

also determined by calculating if there are Tables in use that are linked to TableGroup through

TableGroupComposition).

20 Application of this mechanism requires consistent assignment of Header Codes in Tables under such
TableGroup.

V.0.7, Public Draft, 22/05/2023 49

EBA and EIOPA Regular Use

TableGroup is a Concept that can be assigned with Owner (4.1.2). It can be linked to Reference

(4.1.3.2) and its Name and Description attributes are translatable (4.1.3.1).

5.2.1.5 Table Relation

The primary relation between Tables resulting from decomposition of one Table into many (for

various purposes) is described in section 5.2.1.1.

Other relations between Tables can be constructed using Concept Relation mechanism (4.1.4). DPM

currently enables lining tables using “table_variant” ConceptRelation.Type that indicates at the

target of the relation Table that is a variant of Table at its source. This mechanism can be used to

indicate that one Table e.g., “Balance sheet for ring fence funds” is a variant of “Balance sheet”

Table. Other relation types can be defined by Modellers.

5.2.1.6 TableAssociation and KeyMapping

As explained in 5.2.1.1, Tables can be split due to normalisation. More detailed information about

how these decomposed Tables relate to one another or can be assembled back in the demoralised

view, may be indicated using TableAssociation and KeyHeaderMapping as presented on Figure 29.

Figure 29. TableAssociation and KeyMapping.

TableAssociation associates Child Table with Parent Table. Definition and documentation of the

association is contained in TableAssociation.Name and TableAssociation.Description (both of which

are translatable - 4.1.3.1). Other attributes of TableAssociation describe the characteristics of the

association:

V.0.7, Public Draft, 22/05/2023 50

EBA and EIOPA Regular Use

- if the relationship is identifying (IsIdentifying set to TRUE) indicating that Child Table is

dependent on Parent Table (and cannot exists without it);

- if it a Child Table is a subtype of Parent Table, which in turn is a supertype (IsSubtype set to

TRUE); in this case SubtypeDiscriminator attribute points to Header of Parent Table whose

values determine the target subtype(s);

- cardinality and optionality of relationship defined on:

o Parent end (ParentCardinalityAndOptionality): '0_1', '1', '0_m', '1_m',

o Child end (ChildCardinalityAndOptionality): '0_1', '1', '0_n', '1_n'.

For association between Open Tables (i.e. including one or more Key Variables), it is possible to map

Headers of these Tables by indicating in KeyHeaderMapping entity which Header from Parent Table

is used as Foreign Key Header in Child Table. Note that associated Headers do not need to be Key

Headers (e.g. Header from Parent Table used as Foreign Key in Child Table does not need to be a Key

Header in Parent Table).

Owner (4.1.2) of TableAssociation must be the same as Owner of Tables which it associates.

TableAssociation must have Name and may have Description (which are translatable, 4.1.3.1).

As a Concept, TableAssociation can be linked to Reference (4.1.3.2).

5.2.2 Packaging
Information requirements are packaged thematically in Frameworks (5.2.2.1) that typically reflect

legislation imposing certain reporting requirements. Apart from what is being collected, regulations

determine also reporting population and reporting calendar or circumstances that require data to be

submitted. This is managed by means of Modules (5.2.2.2). Packaging component entities and their

relations to rendering and Variables described in the next sections of this documents are presented

on Figure 30.

V.0.7, Public Draft, 22/05/2023 51

EBA and EIOPA Regular Use

Figure 30. Packaging component entities and relations.

5.2.2.1 Framework

Framework is the uppermost level of grouping of information requirements. It typically corresponds

to a piece of legislation, therefore its association to Owner (4.1.2) and Reference (4.1.3.2) is

particularly important as it constitutes existence of this Framework by indicating the Organisation

that issued this regulation and/or manages this Framework.

Figure 31. Framework and Module.

As presented on Figure 31, Framework is identified by its Code. In addition, Framework must have

Name and may be provided with Description (both are translatable, 4.1.3.1)

5.2.2.2 Module

Module gathers information requirements that are supposed to be reported together, i.e., in one

report.

V.0.7, Public Draft, 22/05/2023 52

EBA and EIOPA Regular Use

Figure 32. Module, its Composition and Parameters.

As a result of bug fixes or modifications to the underlying regulations, composition of information

requirements for Module may change in time. Therefore, Module is versioned by means of

ModuleVersion that refers to Release (4.2.1). More importantly, ModuleVersion definition includes

FromReferenceDate and (optional) ToReferenceDate attributes that identify its application dates

(4.2.2). This enables determining which ModuleVersion shall be used for reporting of data for a given

reference date (for a given Module there must be only one Version applicable for one reference

date).

ModuleVersion is identified by Code and Name and may be provided with Description.

As presented on Figure 32, information requirements to be reported for ModuleVersion are defined

by indication of applicable Tables and their Versions (5.2.1.1) assigned to this ModuleVersion

through the ModuleVersionComposition. This indirectly identifies all Variables (5.3.1) to be reported

for ModuleVersion (which results from Key Headers and Cells of all linked TableVersions).

Each Module covers one reporting scenario, usually applicable to specific type of reporting entities,

with observations measured is specified manner for a given period or at a moment in time, in a

particular currency applicable to all monetary amounts. Such global parameters applicable to all Fact

Variables (5.3.2) in ModuleVersion can be expressed by Key Variables composed in CompoundKey

(5.3.4) associated to ModuleVersion or by Attribute Variables linked to ModuleVersion via

ModuleParameters. The latter are typically constructed as Variables indicating Property and

SubCategoryVersion that consist of only one Item.

Module level parameters and Keys do not need to be repeated on (i.e. directly assigned to) every

Fact Variable belonging to this Module. They can be however overridden by another value, if

explicitly attached to Fact Variable or its Key Variable for a given Property represented by Key or

Attribute Variable applied on Module level.

V.0.7, Public Draft, 22/05/2023 53

EBA and EIOPA Regular Use

Module and ModuleVersion are Concepts. They inherit Owner from Framework. Both may have

references (4.1.3.2). ModuleVersion Name and Description are translatable (4.1.3.1).

5.3 Identification and description of each reported value
Unique identification and description of each reportable value is required to explicitly explain what is

expected to be exchanged and enable tracking changes in modelling of each submitted value.

5.3.1 Variable
Each distinct quantitative or qualitative reportable value (regardless of its occurrence in rendering) is

represented in the DPM as Variable. Next sections of this chapter discuss types and versioning of

Variables. Entities and relations of this component of metamodel and their relations to other

components are presented on Figure 33.

Figure 33. Variables component entities and relations.

5.3.2 Variable Types
There are four Types of Variables:

- Fact Variable, which represents reported observation, typically a monetary amount, other

numeric data, a text, a date or an enumeration. Fact Variable may refer to one or more Key

Variables and/or Attribute Variables that are needed to complement understanding of the

piece of data carried by Fact Variable;

- Key Variable may be needed by some Fact Variables in order to explicitly and uniquely

identify exchanged observation; this identification can be Module wide (e.g., reporting entity

and period) or apply to individual Fact Variables (e.g. appearing in an Open Table - 5.2.1.1 -

V.0.7, Public Draft, 22/05/2023 54

EBA and EIOPA Regular Use

where key column(s) identify non-key columns in each row or key sheet(s) identify all cells in

that sheet of a Table);

- Attribute Variable provides information about some properties of exchanged observation

such as its unit of measure, accuracy or a comment expected to be associated to it by a

reporting entity in their report; Attribute Variable typically applies to Fact Variables but if

needed can be applied also to Key Variables;

- Filing Indicator Variable which corresponds to each reporting unit (e.g. TableGroup or Table)

that is used by Operations to determine if Operations shall be executed provided that a

reporting unit is declared as present or not in a submitted report. In case of the EBA and

EIOPA models, Filing Indicator Variables result from dedicated Content Tables, that list all

reportable units for each Module. For modelling purposes, Headers and Variables of this

Table apply a dedicated Property and Items of FilingIndicators Category (Table 8).

Variables can be related to one another by means of Concept Relation (4.1.4). The following

ConceptRelation Types are dedicated to connecting Variables:

- “factVariable_keyVariable” – links Fact Variable (at the source of Relation) to Key Variable

(at the target of Relation) that is needed to identify this Fact Variable,

- “variable_attribute” links Fact Variable or Key Variable (at the source of Relation) to its

Attribute Variable (at the target of Relation).

Other Relation Types that can be used on Variables are “equivalent_concept” that connects two or

more Variables (Fact, Key, Attribute or mix of any of these) whose meaning is the same but

representation in modelling is different and “version_fix”/“version_new” to support historization by

means of Releases.

5.3.3 VariableVersions
Modelling of Variable may change in time. For this reason, VariableVersion represents Variable for a

given Release (4.2.1).

Each VariableVersion must indicate Property (5.1.4).

Additionally as explained in 5.1.8, enumerated Variable indicates SubCategory (5.1.3) listing and

constraining Items (5.1.2) that are selectable options for this VariableVersion.

VariableVersion.IsMultiValued set to TRUE indicates that observation corresponding to such

enumerated Variable can be reported with two or more Items from the indicated SubCategory.

When VariableVersion.IsMultiValued is set to FALSE entities can report only one Item per

observation (from the indicated SubCategory).

Fact Variable may refer to Context (5.1.5) if Property assigned to it is insufficient to fully describe the

meaning of that Fact Variable.

Fact Variable that requires Key Variables to be identified, links to CompoundKey (5.3.4) gathering

(via KeyComposition) all Key Variables applicable to this Fact Variable.

VariableVersion can be identified by its Code and its description can be included in Name attribute

(which is translatable, 4.1.3.1).

Variable and VariableVersions are Concepts and therefore have Owner (which VariableVersion

inherits from Variable) and can have references (4.1.3.2).

V.0.7, Public Draft, 22/05/2023 55

EBA and EIOPA Regular Use

5.3.4 CompoundKey and its KeyComposition
Open Tables (5.2.1.1) contain one or more Key Headers (5.2.1.2). Each Key Header results in Key

Variable (5.3.2). As presented on Figure 34, all Key Variables of any TableVersion are gathered

through KeyCompositon to one CompoundKey. This CompoundKey is referred:

- from TableVersion and all Fact Variables of this TableVersion and/or

- by ModuleVersion (5.2.2.2) in which case it implicitly applies to all Fact Variables of all Tables

in this ModuleVersion (unless overridden).

Figure 34. CompoundKey and KeyComposition application to TableVersion and ModuleVersion.

5.3.5 Variables’ definition process
Although Variables (5.3.1) can be defined irrespective of the rendering, in the typicall modelling

process they result from Tables (5.2.1.1).

Fact Variables (5.3.2) are derived from Cells (5.2.1.3), where Table level Glossary terms contribute to

definition of Headers (in which case Glossary terms are inherited, unless overridden, from upper-

level Headers - 5.2.1.2) and is propagated to Cells on intersection of these Headers.

V.0.7, Public Draft, 22/05/2023 56

EBA and EIOPA Regular Use

Key Variables are linked from Key Headers which have no Cells attached. This is to ensure that open

(or semi-open, i.e. enumerated and constrained by means of SubCategory - 5.1.3) Sheets, Columns

or Rows are modelled in the same way regardless of their graphical orientation (as ultimately it is a

matter of subjective decision of a Modeller to display these in certain direction).

Global Attribute and Key Variables are identified during definition of Modules (5.2.2.2) they refer to.

5.4 Operations on data
In addition to explicit and comprehensive description and unique identification of information

requirements, DPM enables representation of definitions of Operations on data. These could be:

- quality checks related to imposing constraints on requested data values or their formats,

- documentation of logical and arithmetic relations between reported data,

- data transformations enabling producing new data from reported observations according to

certain formulas.

These definitions can be used by software applications parsing reports to execute Operations on

reported data.

5.4.1 Operations
As indicated on Figure 35, Operations are represented in form of Abstract Syntax Tree (AST)21, where

tree nodes are Operators (4.1.1.5) or OperandReferences referring to Variables (5.3.1), Properties

(5.1.4), Items (5.1.2), SubCategories (5.1.3) or – through OperandReferenceLocation to Cells (5.2.1.3).

21 https://en.wikipedia.org/wiki/Abstract_syntax_tree

https://en.wikipedia.org/wiki/Abstract_syntax_tree

V.0.7, Public Draft, 22/05/2023 57

EBA and EIOPA Regular Use

Figure 35. Entities and relations of Operations component.

Operation Type indicates if Operation represents:

- “validation” – a quality check checking correctness and consistency of reported fata

reported data,

- “calculation” – transformation of reported data to produce new derived data, e.g. ratios,

aggregates, etc,

- “precondition” – check that determines if another related Operation should be executed,

- “conditional_severity” – test that determines severity of another related Operation.

Operations can be grouped, nested and sequenced. This latter is used for Operations that serve as a

precondition or inform how severity is determined.

Operation Source indicates the origin of Operation which can be one of the following:

- “sign” – checks if a reported value is positive or negative, derived from TableVersionCell.Sign

(5.2.1.3),

V.0.7, Public Draft, 22/05/2023 58

EBA and EIOPA Regular Use

- “hierarchy” – originates from one of SubCategories which structure along with

ArithmeticOperators and ComparisonOperators (5.1.3) were identified by Modellers as

applicable to verify reported data or produce new date,

- “existence” – checks if mandatory data was reported, derived from

TableVersionCell.IsNullable (5.2.1.3),

- “property_constraint” – ensures that Property is assigned with allowed Items (derived from

SubCategories applied to Variables for a given Property),

- “user_defined” – neither of the above, typically defined by modeller by indicating Table

Headers, Cells, Variables or glossary terms and applying them in test expression along with

Operators and scalars,

- “variant” – as above but defined on TableGroups whose type is “templateScope” (5.2.1.4)

and therefore propagated to all Tables that this TableGroup or its descendants are

composed of (via TableGroupComposition).

Operation is versioned by means of OperationVersion referring to Release (4.2.1).

OperationVersion applies to data reported for Modules it is connected to. For Operations whose

Type is “validation”, this connection is made through OperationScope and

OperationScopeComposition to enable handling situations where Operation has different severity

depending on the Module or can be deactivated/re-activated starting from certain submission date

(4.2.3). Operations whose Type is “calculation” are additionally linked to the derived Variable

through VariableCalculation.

As explained above, Operations are represented as trees whose branches and leaves

(OperationNodes) link to Operators (4.1.1.5) and Operands. Detailed explanation of this mechanism

and description of attributes of these entities can be found in the DPM XL and ML documentation.

Operation, OperationVersion and OperationScope are Concepts and therefore are assigned with

Owner, where the latter two inherit the Owner of the first. All three can have references (4.1.3.2).

Description of OperationVersion can be translated (4.1.3.1) to any natural language while Expression

can be reflected in any programming language (e.g. Java, .Net, Python, R, SQL) or other formal

language (different syntaxes build according to specified grammar).

5.4.2 Handling external information
Some Operations refer to external data i.e. information not belonging to any Framework (5.2.2.1 –

and hence Modules 5.2.2.2) and therefore not exchanged in reports. This could be in particular:

- master data about reporting entities (that may impact data to be disclosed in reports or

determine which ratios or aggregates can computed based on reported data), or

- reference data (e.g. registry of entities or instruments, that can be crosschecked against

reported information).

Such metadata can be resembled in DPM as Properties (5.1.4) of dedicated Categories (5.1.1), and

eventually as Variables (5.3.1) which as Operands can be referred from Operations and treated as

parameters, that during execution are replaced with values from this master or reference data.

