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Abstract 

This study proposes the potential methodological approach to be utilized by regulators 

when setting up a Long-Term Rate (LTR) for the evaluation of insurers’ liabilities 

beyond the last liquid point observable in the market. Our approach is based on the 

optimization of two contradictory aspects – stability and accuracy implied by economic 

fundamentals. We use U.S. Treasury term structure data over the period 1985-2015 

to calibrate an algorithm that dynamically revises LTR based on the distance between 

the value implied by long-term growth of economic fundamentals in a given year and 

the regulatory value of LTR valid in a year prior. We employ both Nelson-Siegel and 

Svensson models to extrapolate yields over maturities of 21-30 years employing the 

selected value of the LTR and compare them to the observed yields using mean 

square error statistic. Furthermore, we optimise the parameter of the proposed LTR 

formula by minimising the defined loss function capturing both mentioned factors. 
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Introduction  

The aim of this paper is to propose the methodological framework on updating the 

Long-Term Rate (LTR) based on the regulator’s preference between stability and 

accuracy reflecting a theoretical value. By defining a quantitative definition on these 

two criteria, regulators would obtain a clear simple rule when updating the regulatory 

LTR value.  As interest rates on investment instruments with very long maturities 

cannot be typically observed in the market, Long-Term Rate (LTR) is essential for 

valuation of long-term commitments of insurers.   

The current low interest rate environment poses two types of risk for insurance 

companies (e.g. EIOPA Financial Stability Report, 2013). First, cashflow risks arise 

from a narrowing yield spread, as new premiums and returns on maturing investment 

are reinvested at lower yields relative to the yields that insurers have committed to 

pay. The available margin on this business is thus gradually eroded by a low yield 

environment if no action is taken to alter the underlying position. Second, valuation 

risks are linked to the calculation of present values of assets and liabilities of 

insurance companies. Under low interest rates, a decline in benchmark interest rates 

will be also reflected in the discount rate applied to liabilities. The fact that the 

duration of liabilities is typically greater than that of assets for life insurers in 

particular leads to the erosion of available net assets, because the present value of 

liabilities would increase more than that of assets. Consequently, insolvency risks of 

insurances are exacerbated. 

At present, the LTR used for discounting insurers’ long-term liabilities is not universal 

across countries. For instance, the European Insurance and Occupational Pensions 

Authority (EIOPA) recommends in its Technical Specification for the Preparatory Phase 

of Solvency II (2014) that the LTR (called UFR - ultimate forward rate) is set to 4.2 

per cent until the end of 2016. In this specification, LTR is defined as a function of 

long-term expectations of the inflation rate, and of the long-term average of short-

term real interest rates. Furthermore, variations in the recommended LTR are 

arranged for countries with different inflation expectations (EIOPA, March 2016). The 

LTR can either take the value of 3.2 per cent for currencies with low inflation 

expectations (Swiss Franc, Japanese Yen), or 4.2 per cent for EEA currencies and 

those non-EEA currencies that are not explicitly mentioned in any other category, or 

5.2 per cent for Brazilian, Indian, Mexican, Turkish and South African currencies, for 

which inflation expectations are higher. In contrast, some national supervisors decided 

to implement their own LTR methodologies in the domestic financial markets. In this 
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spirit, the Swiss Financial Market Supervisory Authority (FINMA) implemented in July 

2015 the LTR of 3.9 per cent while at the same time the Dutch National Bank adjusted 

the LTR for the Dutch pension sector. In its 2015 field testing package for the 

insurance capital standard, the International Association of Insurance Supervisors 

(IAIS) chose to apply the LTR equal to 3.5 per cent (EIOPA, April 2016). The EIOPA’s 

LTR framework is, however, currently undergoing revisions. The new methodology for 

the calculation of the LTR on an ongoing basis is expected to be implemented in 2017 

(EIOPA, April 2016).  

With regard to how frequently the LTR should be revised, we propose in this paper a 

quantitative approach that reflects on two contradictory aspects – the LTR stability in 

time versus its distance from the derived theoretical benchmark value based on the 

economic fundamentals. 

A Brief Literature Review 

The low yield environment resulting from monetary policies followed by European 

central banks poses at present the most prominent risk to the insurance sector. 

Despite the fact that such policies contributed to financial stability in the short term 

(IMF Global Financial Stability Report, 2013), lower yields on corporate and sovereign 

bonds in many European countries have unfavourable implications for insurer 

companies’ profitability, solvency and sustainability (EIOPA, June 2016).  

Overall, insurance companies are seen as a relatively stable segment of the financial 

system. However, over time their interaction with other agents in the financial 

system, such as banks or pension funds, has intensified. The negative spill-overs and 

risk of bi-directional contagion led to an increased acknowledgement of the 

importance of the insurance sector for the overall financial stability (e.g. Bakk-Simon 

et al., 2012). This interconnectedness and the size of insurance segment make 

insurance firms important from a financial stability point of view and lay ground for 

further research in this area. 

In terms of performance of insurance companies, there are several papers focusing on 

modelling their profitability. In line with research on drivers of bank profitability (e.g. 

Staikouras and Wood, 2004; Macit, 2012; Ameur and Mhiri, 2013, Goddard, 

Molyneux, and Wilson, 2004), Christophersen and Jakubik (2014) revealed a strong 

link between insurance companies’ premiums, on one side, and economic growth and 

unemployment on the other side. Similarly, Nissim (2010) argues that the overall 

economic activity affects insurance carriers’ growth, because the demand for their 
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products is affected by the available income. Moreover, Nissim underlines that 

investment income is highly sensitive to interest rates, both in the short and in the 

long run. D’Arcy and Gorvett (2000) argue that inflation heavily affects the liability 

side of property-liability insurers’ balance sheets. As for insurer insolvencies, Browne 

et al. (1999) find a positive correlation between the number of insurers in the life-

insurance industry, unemployment and stock market returns on one side and life-

insurers’ insolvency on the other side. Similarly, failure rate of property-liability 

insurers was also found to be positively correlated with the number of insurers in the 

industry (Browne and Hoyt, 1995).  

Since interest rates were shown to affect income and profitability of insurance 

companies in previous research studies, we propose to further investigate in this 

paper the optimal time for revision of long-term interest rate used for discounting of 

insurance firms’ long-term commitments which has substantial valuation implications.  

The paper is organized as follows. Section 2 presents the term structure data used in 

our analysis, section 3 describes the methodology applied to the LTR setting, section 4 

presents our results, section 5 discusses implications for insurance companies linked 

to LTR changes, and section 6 concludes. 

Data 

In our analysis we use the U.S. Treasury term structure data collected by Gurkaynak 

et al. (2006). The advantages of using U.S. data as opposed to European data stem 

from the availability of long historical time series of yield curves with maturities up to 

30 years. The data set is compiled on a daily basis, with the first entry in 1961 and is 

being regularly updated. This data set includes all U.S. Treasury bonds and notes with 

the exception of the following: 

i. Securities with option-like features, i.e. callable bonds or flower bonds. 

ii. Securities with less than three months to maturity due to a specific behaviour 

of yields on securities with such short residual maturities. 

iii. Treasury bills that seem to be affected by segmented demand from money 

market funds and other short-term investors (Duffee, 1996). 

iv. Twenty-year bonds in 1996 owing to their cheapness relative to ten-year 

notes of comparable duration. 

v. Securities with maturities of two, three, four, five, seven, ten, twenty and 

thirty years issued in 1980 or later owing to the fact that they trade at a 
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premium to other treasury securities given their greater liquidity in the repo 

market. 

vi. Securities excluded on an ad hoc basis to deal with other data issues. 

 

All in all, the treasury yield curve provided in this data set is estimated in a way that 

liquidity of the included securities is adequate and relatively uniform. 

For the purposes of our analysis we extract from the data set by Gurkaynak et al. 

(2006) one yield curve per year from the 1985-2015 period. We opt for the last 

available yield curve in each calendar year, usually from December 31. Thus, our 

sample consists of 31 yield curves altogether. The starting date of our observed time 

period is conditional on the availability of Treasury zero coupon rates with maturities 

up to 30 years. In the data set by Gurkaynak et al. (2006) 30 years is the maximum 

available maturity for U.S. securities and the first year when a yield curve with this 

maturity becomes available is 1985 which also marks the start of our sample.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A2.1 shows the full U.S. Treasury term structure for the 1985-2015 period and 

maturities 1 to 30.  

Figure A2.1: Term structure (1985-2015) 

 

Note: X-axis shows maturities of U.S. Treasury securities, y- axis indicates the period of observation and z-

axis depicts Treasury zero rates in per cent 
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Next, we use the historical yield curve data for the 1985-2015 period extracted from 

the data set by Gurkaynak et al. (2006) to calibrate a simple framework for setting up 

the simple rule when to revise the Long-Term Rate (LTR). 

Methodology 

In this section we present a framework for setting up the LTR and for providing a LTR 

revision mechanism using a benchmark value for the long-term rate that reflects 

economic conditions in the long run using extrapolation of the term structure based on 

two different models. 

Setting the Long Term Rate 

EIOPA’s Technical Specification for the Preparatory Phase of Solvency II (2014) 

defines the LTR as the sum of the long-term average of short-term real interest rates 

and long-term expectations of the inflation rate, usually captured by the central 

bank’s inflation target.  

In our framework we set the benchmark for the LTR equal to the average 

growth of nominal U.S. GDP over the previous twenty years.45 Hence, the 

benchmark for LTR reflects average long-term growth of real GDP and inflation 

in the U.S. We obtain the data from the Federal Reserve Bank of St. Louis and use 

Equation 1 to calculate the average twenty-year growth rate of nominal GDP for each 

year in the 1985-2015 period:  

𝑔𝑡 = (
𝐺 𝑃𝑡
𝐺 𝑃𝑡 20

)
1/20

− 1, 

 

where g is the average long-term growth rate and t indicates year from the 1985-

2015 period.46  

Next, we set the initial regulatory LTR equal to the average growth rate of nominal 

U.S. GDP over the previous twenty years in 1984 using Equation 1. Subsequently, we 

calculate 𝑈𝐹𝑅𝑡 for every year over the 1985-2015 period using the following equation: 

 

                                       

45
 There are many alternative ways to set up the benchmark for the LTR. However, the aim of this paper is to set up a 

framework providing a rule on the LTR revision rather than proposing the regulatory value. 

46
 We opt for twenty-year average to capture the whole economic cycle and not being substantial affected by 

technological changes. 

(1) 
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𝐿𝑇𝑅𝑡 = 𝑓(𝑔𝑡 , 𝐿𝑇𝑅𝑡 1) + 𝐿𝑇𝑅𝑡 1 

𝑓(𝑔𝑡 , 𝐿𝑇𝑅𝑡 1) = {
𝑔𝑡 − 𝐿𝑇𝑅𝑡 1   𝑖𝑓    |𝑔𝑡 − 𝐿𝑇𝑅𝑡 1| > 𝑝

0   𝑖𝑓     |𝑔𝑡 − 𝐿𝑇𝑅𝑡 1| ≤ 𝑝
}, 

where 𝑔𝑡 is obtained from Equation 1, t indicates a year from 1985 to 2015 and p is 

the distance between the long-term growth rate of nominal U.S. GDP at time t and 

LTR from time t-1. Equation 2 thus resets LTR at time t if the distance between the 

long-term nominal GDP growth at time t and regulatory LTR from the previous period 

t-1 exceeds the value given by p. As we prefer to express 𝑔𝑡 in percentages in our 

analysis, the values we assign are also in percentages. Hence, p takes values of 0.1%, 

0.2%, 0.3%, 0.4%, up to 3.5% and we calculate the LTR in each year of the 1985-

2015 period for every assigned value of p from Equation 2. 

Extrapolation of Yield Curves 

The next step in our framework for setting up the LTR and its optimal adjustment 

frequency is extrapolation of zero rates on U.S. Treasury securities for maturities 

beyond twenty years. Given that EIOPA Technical Standards (2016) set the last liquid 

point (LLP), i.e. the maturity up to which yields on securities are quoted on the 

market, to 20 years, we also adopt this definition and extrapolate yields on securities 

with maturities from 21 to 30 years, i.e. the maximum maturity available in the data 

set provided by Gurkaynak et al. (2006) from 1985. 

For extrapolation we use the models by Nelson and Siegel (1987) and its extension by 

Svensson (1994) that are frequently employed by central banks and other market 

participants (e.g. BIS, 2005) to fit term structures of interest rates. Furthermore, the 

studies by Diebold and Li (2006) and De Pooter, Ravazzolo and van Dijk (2007) 

provide evidence that these models are a useful tool in forecasting exercises of term 

structures of interest rates.  

Despite these advantages, Bjork and Christensen (1999) showed that the Nelson-

Siegel model is not theoretically arbitrage-free, i.e. theoretical prices of securities 

resulting from the model and the actual prices observed on the market differ to such 

an extent that transaction costs do not prevent arbitrage. Since this condition 

between theoretical and observed prices is not hard-coded into the model, it was 

assumed that the model violates no-arbitrage condition. However, Coroneo et al. 

(2011) show on U.S. yield curve data from 1970 until 2000 that the Nelson-Siegel 

model is statistically arbitrage-free. In this sense, another popular model, Smith-

(2) 
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Wilson (2001) model used by EIOPA to extrapolate the yield curve for very long 

maturities, is arbitrage-free as it fits the yield curve exactly up to LLP.  

The Nelson-Siegel (1987) model models the yield curve at a point in time as follows: 

 

𝑦(𝜏) = 𝛽1 + 𝛽2 [
1 − exp (− 𝜏 𝜆⁄ )

𝜏 𝜆⁄
] + 𝛽3 [

1 − exp (− 𝜏 𝜆⁄ )

𝜏 𝜆⁄
− exp (− 𝜏 𝜆⁄ )], 

 

where 𝑦(𝜏) is the zero rate for maturity 𝜏, parameters 𝛽1, 𝛽2, 𝛽3 and 𝜆 need to be 

estimated. 𝛽1 is independent of the time to maturity and as such indicates the long-

term yield; 𝛽2 exponentially decays to zero with increasing 𝜏, thus it only influences 

the short end of the yield curve. 𝛽3 function first increases then decreases with 

increasing 𝜏 which adds a hump to the yield curve.  

The Svensson (1994) model extends the Nelson-Siegel (1987) model by adding a 

second hump to the yield curve: 

 

𝑦(𝜏) = 𝛽1 + 𝛽2 [
1 − exp (− 𝜏 𝜆1⁄ )

𝜏 𝜆1⁄
] + 𝛽3 [

1 − exp (− 𝜏 𝜆1⁄ )

𝜏 𝜆1⁄
− exp (− 𝜏 𝜆1⁄ )]

+ 𝛽4 [
1 − exp (− 𝜏 𝜆2⁄ )

𝜏 𝜆2⁄
− exp (− 𝜏 𝜆2⁄ )], 

where 𝑦(𝜏) is again zero rate for maturity 𝜏 and six parameters, 𝛽1, 𝛽2, 𝛽3, 𝛽4, 𝜆1 and 𝜆2 

need to be estimated. This model is able to better capture the shape of the yield curve 

as it allows for a second hump that usually occurs at long maturities (i.e. twenty years 

and more). The occurrence of the second hump can be attributed to convexity which 

pulls down the yields on long-term securities and as a consequence makes the yield 

curve’s shape concave at long maturities.  

In order to extrapolate U.S. Treasury yield curves for maturities 21-30 we use the R-

project package “ycinterextra” by Moudiki (2013). The package allows us to 

extrapolate the term structure using the LTR calculated from Equation 2 for every 

yield curve over the 1985-2015 period and for every value of p. We thus extrapolate 

U.S. Treasury yields for maturities 21 to 30 using both, Nelson-Siegel and Svensson 

model. 

(3) 

(4) 
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Construction of a Loss Function 

The last step in constructing our framework is to join the LTR setting and 

extrapolation of yields using the two yield curve models into a single statistic for each 

value of p. In particular, we take into account how stable the LTR set in the previous 

subsection is over the entire observed time period and how close the extrapolated 

yields using that particular LTR are to the actual yields at maturities 21-30. We call 

this aggregate statistic a loss function as it penalizes frequent changes in LTR setting 

and the distance of extrapolated yields from actual yields at maturities 21-30. We 

calculate the loss function for every value of p, which expresses the distance between 

the average long-term growth of nominal GDP and the regulatory LTR from the 

previous period, over the 1985-2015 period.  

Our proposed loss function has the following form: 

𝐿𝑜𝑠𝑠𝑝 = 𝑤𝑃𝑟𝑒𝑐 ×𝑀𝑆 𝑝 +𝑤𝑆𝑡𝑎𝑏 × (min
𝑡𝜖𝑇
(𝑀𝑆 𝑝,𝑡) + 𝑘 × (max

𝑡𝜖𝑇
(𝑀𝑆 𝑝,𝑡) − min

𝑡𝜖𝑇
(𝑀𝑆 𝑝,𝑡))) 

𝑇 = 〈1985; 2015〉, 

where 𝑇 is the set of the observed time period, p is the distance between long-term 

growth rate of nominal U.S. GDP at time t and LTR from time t-1, k is the number of 

LTR changes over the total number of years in the observed period of 1985-2015 for 

the corresponding value of p, and 𝑤𝑃𝑟𝑒𝑐, 𝑤𝑆𝑡𝑎𝑏 are the weights of the two loss function 

components. They can take values from 0 to 1 and express a regulator’s preference 

towards either extrapolation precision or LTR stability. It needs to hold that 𝑤𝑃𝑟𝑒𝑐 +

𝑤𝑆𝑡𝑎𝑏 = 1. Therefore, the weights set to 0.5 would indicate there is no preference 

towards either precision of extrapolation or LTR stability as the two components are 

weighed equally in the loss function. 𝑀𝑆 𝑡, mean square error, is a standard statistical 

concept that measures the average of the squares of the errors between the yields at 

maturities 21-30 obtained from extrapolation using Nelson-Siegel and Svensson 

models for the chosen regulatory LTR, and the actual yields at these maturities. For 

each value of p we calculate the corresponding average mean square error 𝑀𝑆 𝑝 over 

the observed time period defined as follows: 

𝑀𝑆 𝑝 =
1

31
× ∑ 𝑀𝑆 𝑡

2015

𝑡=1985

=
1

31
×
1

10
× ∑ ∑(𝑦𝑖,𝑡̂ − 𝑦𝑖,𝑡)

2
30

𝑖=21

2015

𝑡=1985

, 

where i takes values of maturities 21 to 30, t indicates a year in the 1985-2015 period 

and 𝑦𝑖,𝑡̂ stands for an estimate of the yield at maturity i and year t obtained by 

(5) 

(6) 
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extrapolation from either Nelson-Siegel or Svensson model while 𝑦𝑖,𝑡 is the actual yield 

at maturity i in year t.  

As for the second component of the loss function, the LTR stability over the observed 

period, we approximate it with the ratio of the number of LTR changes for the 

corresponding p over the number of years in the period 1985-2015, i.e. 31 years. We 

also rescale this ratio to correspond numerically to the first component of the loss 

function 𝑀𝑆 𝑝, as shown in Equation 5. 

We are interested in the value of p that minimizes loss for the 1985-2015 period for 

the regulator’s preferences towards extrapolation precision and LTR stability. Such a 

value of p would reveal by how much the long-term nominal GDP growth rate in a 

given year should deviate from the regulatory LTR from the previous year to have the 

LTR reset to the value given by Equation 2. The loss-minimizing value of p depends on 

a regulator’s preference towards either precision or LTR stability. 

The next section presents the results of calculation of loss for the overall period across 

different values of p, using Nelson-Siegel and Svensson models and different 

regulator’s preferences. 

Results 

In this section we present the results of the loss calculation over the 1985-2015 

period and different values of p using both, Nelson-Siegel and Svensson model, and 

different preferences, i.e. weighting schemes. 

First, we assume that a regulator places equal weight on LTR stability and 

extrapolation precision. In this case, the following condition holds for the weights in 

Equation 5: 𝑤𝑃𝑟𝑒𝑐 = 𝑤𝑆𝑡𝑎𝑏 = 0.5. 
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Figure A2.2: Loss for Different Values of p (weights: 0.50, 0.50) 

 

Note: The dark grey line shows loss over the 1985-2015 period for different values of p (on horizontal axis) calculated 

from Nelson-Siegel model while the light grey line depicts the loss from Svensson model over the same period. The 

light grey bars highlight those values of p that minimize the loss function for both models. The vertical axis indicates 

magnitude of loss. The calculation uses equal weighing. 

We can observe from the Figure A2.2 that the value of p equal to both 1.1% and 

1.2% minimizes loss over the 1985-2015 period when yields are extrapolated using 

Nelson-Siegel model. For Svensson, the loss minimizing value of p equals to 1.3%. 

Next, we turn to alternative weighting schemes in case that a regulator considers 

either stability of LTR overtime more important than how closely a model can 

extrapolate long-term yields to their actual values (yields on Treasury securities for 

maturities of 21-30), and vice versa. 
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Figure A2.3: Loss for Different Values of p (weights: 0.33, 0.67) 

 

The dark grey line shows loss over the 1985-2015 period for different values of p (on horizontal axis) calculated from 

Nelson-Siegel model while the light grey line depicts the loss from Svensson model over the same period. The light 

grey bars highlight those values of p that minimize the loss function for both models. The vertical axis indicates 

magnitude of loss. The weight of 33% is placed on extrapolation precision while 67% is placed on LTR stability 

The Figure A2.3 shows the loss minimizing value of p when weight of 33% is put on 

extrapolation precision and double of that is placed on LTR stability increases to 2.4% 

and 2.5% which is approximately double of the value of p that minimizes loss under 

equal weighting. All in all, the loss is minimized at p=2.4% and p=2.5% for both 

models under the given preferences. 

Next, we choose to favour extrapolation precision over LTR stability in our calculation. 

We put weight of 67% on the first component of the loss function in Equation 5 and 

half of that weight on how stable LTR is in time. 

In this case, the loss minimizing value of p drops to 0.6% when extrapolation is 

performed using Nelson-Siegel model. As for Svensson, the loss minimizing p equals 

to 1.1% and 1.2% under these preferences, which is quite close to the optimal value 

of p under equal weighting. Figure A2.4 presents the results.  

  

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

Minimum Loss_Nelson-Siegel Loss_Svensson



110 

 

Figure A2.4: Loss for Different Values of p (weights: 0.67, 0.33) 

 

The dark grey line shows loss over the 1985-2015 period for different values of p (on horizontal axis) calculated from 

Nelson-Siegel model while the light grey line depicts the loss from Svensson model over the same period. The light 

grey bars highlight those values of p that minimize the loss function for both models. The vertical axis indicates 

magnitude of loss. The weight of 67% is placed on extrapolation precision while 33% is placed on LTR stability.  

For the last two weighting schemes, we suppose that a regulator cares very little 

about one component of the loss function, either MSE or LTR stability, while the other 

aspect is found to be crucial. Figure A2.5 presents the results. 
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Figure A2.5: Loss for Different Values of p (weights: 0.10, 0.90) 

 

The dark grey line shows loss over the 1985-2015 period for different values of p (on horizontal axis) calculated from 

Nelson-Siegel model while the light grey line depicts the loss from Svensson model over the same period. The light 

grey bars highlight those values of p that minimize the loss function for both models. The vertical axis indicates 

magnitude of loss. The weight of 10% is placed on extrapolation precision while 90% is placed on LTR stability. 

The Figure A2.5 presents the loss minimizing values of p when the weight of only 10% 

is placed on extrapolation precision as opposed to the weight of 90% put on stability 

of LTR. For yield extrapolation by both Nelson-Siegel and Svensson model the optimal 

value of p is equal to 2.4% and 2.5%, which is the same as under the weighing 

scheme of 33% placed on extrapolation precision and 67% placed on LTR stability.  
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Figure A2.6: Loss for Different Values of p (weights: 0.90, 0.10) 

 

The dark grey line shows loss over the 1985-2015 period for different values of p (on horizontal axis) calculated from 

Nelson-Siegel model while the light grey line depicts the loss from Svensson model over the same period. The light 

grey bars highlight those values of p that minimize the loss function for both models. The vertical axis indicates 

magnitude of loss. The weight of 90% is placed on extrapolation precision while 10% is placed on LTR stability. 

In case of the reversed weighing of 90% for the precision component of the loss 

function and 10% for LTR (Figure A2.6), the stability of the value of p that minimizes 

loss under the Nelson-Siegel extrapolation drops to 0.3% while p equal to 0.6% is 

optimal for Svensson model (as shown in the Figure above). 

All in all, under equal regulator’s preferences, it appears that if the difference between 

the long term rate measured by average twenty-year growth of nominal GDP at time t 

and LTR valid in period t-1 exceeds 1.2% when Nelson-Siegel model is used for 

extrapolation, LTR at time t should be adjusted to reflect long-term average growth of 

nominal GDP at time t. This difference slightly increases to 1.3% for Svensson model. 

The optimal value of p equal to 1.1% and 1.2% for Nelson-Siegel model amounts to 

the total of three LTR adjustments over the 1985-2015 period while the optimal 

p=1.3% for Svensson model implies only two adjustments.  

The loss minimizing value of p either rises or drops in response to changing 

regulator’s preferences. With the regulator in favour of LTR stability overtime by at 

least two thirds compared to the MSE component, the distance indicative of resetting 
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LTR increases to 2.5%. On the other hand, the regulator caring very little about LTR 

stability would lean towards more frequent revisions of LTR. This is reflected by the 

optimal distance between economic fundamentals and the regulatory LTR as small as 

0.3% and 0.6% under Nelson-Siegel and Svensson model, respectively.  

Next, we use an insurer’s hypothetical portfolio of liabilities to demonstrate valuation 

effects of changes in LTR.  

Policy Implications 

Under a low yield regime, a decline in benchmark interest rates translates into the 

reduced discount rate applied in an insurer’s liabilities valuation overall. This in turn 

leads to a steeper increase in the present value of liabilities over assets, eroding an 

insurer’s surplus and exacerbating insolvency risk of insurance entities. While actual 

market interest rates are applied in valuation of liabilities with short maturities, the 

long term interest rate is used for discounting liabilities with long maturities. In line 

with our assumption that LLP is set to 20 years, changes in LTR affect value of only 

those liabilities with maturities greater than 20 years. 47 

In this section we illustrate on long-term liabilities of different duration within a 

hypothetical insurer’s portfolio how their present value changes in response to 

changes in long-term interest rate within the proposed framework. We take as the 

LTR benchmark value the long-term U.S. nominal GDP growth at reference year 2005. 

We assume LTR has been constant since then, i.e. fixed to 5.39% in 2015. We 

calculate alternative LTRs in 2015 from the formula given in Equation 2.  

We choose those LTRs that correspond to a loss-minimizing value of p under different 

regulatory preferences from the previous section. Table 1 shows changes in the 

present value of long-term liabilities of different duration within a hypothetical 

portfolio given different regulatory preferences towards the LTR setting, and using 

both Nelson-Siegel and the Svensson model. We calculate the change in the present 

value of an insurance’s long-term liabilities due to changes in LTR for average long-

term maturities of 21, 22, 25, 28 and 30 years using the standard definition of 

modified duration: 

∆𝑃𝑉𝜏 = −∆𝐼𝑅𝜏 ×𝑀  

                                                 𝜏 = {21,22,25,28,30}, 

                                       

47
 This is in line with the EIOPA Technical Standards (March 2016). 
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where ∆𝑃𝑉𝜏 indicates a change in the present value of liabilities with average maturity 

𝜏, ∆𝐼𝑅𝜏 expresses change in discount rate of liabilities with average maturity 𝜏 with 

respect to difference between LTR setting and its benchmark, and MD stands for 

modified duration, i.e. the corresponding maturity bracket from the set 𝜏.  

Table A2.1: Impact of different regulatory preferences on the long-term liabilities 

within a portfolio 

Nelson-Siegel Extrapolation 

Preferences benchmark 𝑤𝑆𝑡𝑎𝑏=0.10 𝑤𝑆𝑡𝑎𝑏=0.33 𝑤𝑆𝑡𝑎𝑏=0.67 

LTR value in 2015 5.39% 4.22% 4.56% 5.39% 

AVERAGE 

modified duration 

of liabilities (in 

years) 

21 10.18% 7.22% 0% 

22 11.32% 8.03% 0% 

25 14.79% 10.49% 0% 

28 18.28% 12.97% 0% 

30 20.61% 14.62% 0% 

Svensson Extrapolation 

Preferences benchmark 𝑤𝑆𝑡𝑎𝑏=0.10 𝑤𝑆𝑡𝑎𝑏=0.33 𝑤𝑆𝑡𝑎𝑏=0.67 

LTR value in 2015 5.39% 4.22% 4.56% 5.39% 

AVERAGE 

modified duration 

of liabilities (in 

years) 

21 2.72% 1.74% 0% 

22 3.42% 2.22% 0% 

25 5.82% 3.86% 0% 

28 8.55% 5.77% 0% 

30 10.52% 7.14% 0% 

Note: The impact of deviations of the long-term interest rate from the benchmark given the different regulatory 

preferences on the present value of an insurer’s long-term liabilities of different duration. The first row indicates 

preference of the regulator towards LTR stability. The second row states the corresponding LTR in 2015 calculated 

from Equation 2.  

Overall, we observe a higher sensitivity of present value of liabilities with longer 

durations to changes in LTR. The greater the decrease in LTR with regards to the 

benchmark, the greater the increase in the present value of liabilities across different 

average durations. Therefore, for insurance firms whose portfolio consists of very 

long-term liabilities, such as life-insurers, a relatively small decline in the discount 



115 

 

rate of -0.83% to LTR=4.56% would result in an increase in the value of long-term 

liabilities with average duration of 30 years by more than 14% under Nelson-Siegel 

extrapolation and 7% under Svensson. The smaller impact on present value when 

Svensson model is used for extrapolation can be attributed to smaller deviations of 

spot yields under different regulatory LTRs from spot yields under benchmark LTR 

compared to Nelson-Siegel model. Figure A2.7 depicts extrapolated spot yields versus 

benchmark for Svensson model. 

Figure A2.7: Svensson Extrapolation under different preferences  

 

Note: The Figure shows the actual yield curve as of December 31, 2015 over maturities 1 to 30 years and extrapolated 

spot yields for maturities 21 to 30 years under LTR with different regulatory preferences, and benchmark using 

Svensson model. Benchmark corresponds to extrapolation with LTR equal to average twenty-year U.S. nominal GDP 

growth in 2005. Vertical axis shows spot yields in percentages, horizontal axis indicates maturities in years. 

Figure A2.7 shows that extrapolated spot yields under regulatory LTRs with different 

preferences towards LTR stability are lower than the spot yields under constant LTR 

scenario (in red) for both models. However, the proximity of extrapolated yields under 

different regulatory preferences to the benchmark yields as well as to actual yields is 

greater for Svensson model. Therefore, under Svensson model changes in LTR affect 

present value of long-term liabilities in an insurer’s portfolio to a lesser degree. 
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Conclusion 

As liability side of insurer companies’ balance sheets is typically formed by 

commitments with very long maturities. Hence, they need to be discounted by a 

corresponding long-term interest rate for valuation purposes. However, interest rates 

over very long maturities are seldom observable in the market. As a result, Long-

Term Rate (LTR) needs to be estimated in order to evaluate such long-term contracts. 

Consequently, changes in LTR have valuation effects for insurers. 

In this paper we show a possible approach for updating the interest rate for long-term 

contracts (LTR) in a dynamic way using long-term developments of economic 

fundamentals as a benchmark for LTR. In addition, our approach proposes a loss 

function that weighs two LTR aspects, estimation precision and LTR stability.  

We propose an algorithm of LTR setting that compares by how much long-term 

economic fundamentals measured by average twenty-year nominal GDP growth in a 

given year differ from regulatory LTR from the previous year. If this difference is 

greater than some threshold value p LTR for this period is set to the value given by 

economic fundamentals. A difference smaller than the threshold makes regulatory LTR 

from the prior year also valid in a given year. 

Next, we extrapolate yields over maturities of 21-30 years using Nelson-Siegel and 

Svensson models and compare them to the actual yields from U.S. Treasury term 

structure data over the period of 1985-2015 using mean square error (MSE) statistic.  

We combine the two aspects, LTR stability (the ratio of changes in LTR over the 

observed period) and extrapolation precision (distance between actual and 

extrapolated yields) into a loss function. A preference for each component of the loss 

function is expressed by assigned weights.  

We search for such p (distance between long-term growth of economic fundamentals 

and LTR set in previous period) that minimizes our proposed loss function. 

Finally, we find that once the distance between average twenty-year growth of 

nominal GDP in a given year and regulatory LTR from the previous year exceeds 1.2% 

and 1.3% under preference neutrality for Nelson-Siegel and Svensson model, 

respectively, the LTR should be adjusted. This result changes in response to a 

regulator’s preferences. When the preference towards LTR stability dominates, the 

distance for resetting LTR increases implying fewer changes to LTR over the period 

under investigation, and vice versa.  
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Finally, we illustrate the impact of changes in the long-term interest rates on 

insurance companies by means of a hypothetical portfolio of long-term liabilities. We 

show that extrapolated spot yields under regulatory LTRs with different preferences 

towards LTR stability are lower than the spot yields generated under the assumption 

of constant LTR fixed to average long-term GDP growth levels.  
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